
Assignment: Tabular Reinforcement Learning
Course: Reinforcement Learning, Master CS, Leiden University

Written by: Thomas Moerland

Research Question

In this assignment, you will study a range of basic principles in tabular, value-based reinforcement
learning. They serve as a primer for the rest of the course. In particular, we will study the
following topics:

� Dynamic Programming (DP) (Part 1):
We first focus on dynamic programming, which is a bridging method between planning
and reinforcement learning. DP assumes full access to a model of the environment, i.e., we
can get p(s′|s, a) and r(s, a, s′) for any state s and action a. DP is guaranteed to find the
optimal solution, but it 1) requires a model (which is not always available) and 2) suffers
from the curse of dimensionality (which all tabular methods actually do, and to which we
get back later in the course).

� Model-free RL: We next switch to the reinforcement learning setting, where we do not
have access to a model, but can only permanently execute actions from a state, and have
to continue from the resulting next state.

– Exploration (Part 2) The first issue this brings up is exploration versus exploitation:
we need to sometimes try novel things, but at some point also exploit what we know
works well. We will compare two simple ways to ensure exploration: ε-greedy and a
softmax/Boltzmann policy.

– Back-up: The second main aspect of any RL algorithm is the back-up. We acquired
new information, and want to construct a new estimate of the value of a certain
state-action pair s, a. There are two important considerations when constructing this
back-up:

* Off-policy versus on-policy (Part 3): This difference is best illustrated for
one-step back-ups, for which we will compare Q-learning (off-policy) to SARSA
(on-policy).

* Depth (Part 4): We can also compute deeper back-ups, where we sum more
rewards in a trace. We will compare 1-step back-ups, n-step back-ups, and Monte
Carlo back-ups.

1

Environment

You will study these methods on the Stochastic Windy Gridworld, an adapted version of Example
6.5 (page 130) in Reinforcement Learning: An Introduction (second edition) by Sutton and Barto
(see figure).

The environment consists of a 10x7 grid, where at each cell we can move up, down, left or
right. We start at location (0,3) (we start indexing at 0, as is done in Python as well), indicated
in the figure by ‘S’. Our goal is to move to location (7,3), indicated by ‘G’. However, a special
feature of the environment is that there is a vertical wind. In columns 3, 4, 5 and 8, we are
pushed one additional step up, while in columns 6 and 7, we move up two additional steps. The
wind does not always blow, but is randomly present on 80% of the occasions (which makes the
environment stochastic!). The reward of the agent at each step is -1, while reaching the goal
gives a reward of +35, and terminates the episode.

Preparation

Python You need to install Python 3, the packages Numpy, Matplotlib, SciPy and an IDE of
your choice.

Files You are provided with the following Python files:

� Environment.py: This file generates the environment. Run the file to see a demonstration
of the environment with randomly selected actions. Inspect the class methods and make
sure you understand them. With render() you can interactively visualize the environment
during execution. If you provide Q_sa (a Q-value table), the environment will also display
the Q-value estimates for each action in each state, while toggling plot_optimal_policy

will also show arrows for the optimal policy. Play around with these settings, and make
sure you understand them.

� Dynamic_Programming.py: This file contains placeholder classes and functions for your
Dynamic Programming experiments (Part 1). Your goal is to complete these classes and
functions.

� Q-learning.py: This file contains placeholder classes and functions for your Q-learning
implementation.

� SARSA.py: This file contains placeholder classes and functions for your SARSA implemen-
tation.

2

� MonteCarlo.py: This file contains placeholder classes and functions for your Monte Carlo
RL implementation.

� Nstep.py: This file contains placeholder classes and functions for your n-step Q-learning
implementation.

� Experiments.py: In this file you will write all your code for the reinforcement learning
experiments (Part 2, 3 and 4).

� Helper.py: This file contains some helper classes for plotting and smoothing. You can
choose to use them, but are of course free to write your own code for plotting and smoothing
as well. Inspect the code and run the file to verify that your understand what the functions
do.

Grading The focus of this assignment is on understanding the basis RL methodology. There-
fore, we mostly grade you on showing conceptual understanding, and provide you with relatively
much starting code. You are graded on three criteria:

1. A proper description of your algorithms and methodology in your report. Include
equations, explain what they mean, show that you understood the algorithm.

2. A proper implementation of the algorithms. Do not copy your code from others!
(We have to punish plagiarism). Systematically making the same mistakes as someone else
is also suspicious. You can discuss together how an algorithm works, but you really need
to write your own code.

3. A good interpretation and discussion of your results. Show that you understood
what was going on, and that you thought about different algorithmic decisions.

Handing in The deadline for this assignment is Sunday March 6, 23:59. You need to hand
in:

� A report (pdf) of maximum 8 pages. Use the following template. Be sure your report:

– Describes your methods (include equations).

– Shows results (figures).

– Interprets your results.

� All code to replicate your results. Your submission should contain:

– The original Environment.py and Helper.py

– Your modified Dynamic_Programming.py, Q_learning.py, SARSA.py, MonteCarlo.py,
Nstep.py, and (potentially) Experiment.py.

– Executing Dynamic_Programming.py and Experiment.py from the command line
should produce all your plots, and save them to the current folder (with an clear
name).

Be sure to verify that your code runs from the command line, and does not give
errors!

3

https://www.overleaf.com/latex/templates/icml2021-template/dsftnbmjgyhv

Warning: common errors (with statistical experiments).

� Average your results over repetitions (since each runs is stochastic)! If necessary, apply
additional smoothing to your curves to make them better interpretable.

� In each repetition, really start from scratch, i.e., randomly initialize a new environment,
and initialize your policy from scratch. Do not fix any seeds within the loop over your
repetitions! Each repetition should really be an independent repetition.

For these experiments, code to average ove repetitions, and smooth learning curves, is given
in the assignment. This serves as an example, so you can do it yourself in next assignments.

4

1 Dynamic Programming

You first study Dynamic Programming, in particular the Q-value iteration algorithm (Alg. 1).
In this algorithm you sweep through all state-action pairs, each time updating the estimate of a
state-action value based on the following equation:

Q(s, a)←
∑
s′

p(s′|s, a) ·
(
r + γ ·max

a′
Q(s′, a′)

)
(1)

In DP, you have access to the full model of the environment dynamics. Therefore, you may
use the StochasticWindyGridworld.model() function in your experiments.

You proceed with the following steps:

a) Implement:

� Correctly complete the class QValueIterationAgent() in the file DynamicProgramming.py.

– In init(), initialize a table with means Q(s, a) to 0.

– In select_action(), implement the greedy policy: π(s) = arg maxaQ(s, a).

– In update(), implement the Q-iteration update, shown in Eq. 1.

� Correctly complete the function Q_value_iteration() in the file DynamicProgramming.py.
This function should execute Q-value iteration, as shown in Algorithm 1. It first initial-
izes an agent, and then sweeps through the state space, each time calling the model and
then updating the agent, until convergence.

b) Experiment: Verify that your code works by running the file. You should see a visualization
of all the Q-value estimates during execution of the algorithm. Closely inspect the values,
how they change, and how they converge. (You may need to increase the value of
step_pause to make plotting slower). Do you understand the final values in each cell, and
can you interpret them?

c) Write: Write a section of you report, in which you:

� Explain your method (with equations/algorithm boxes).

� Show a picture with the progression of Q-value iteration during execution, e.g., the
estimates at each state-action at the beginning, midway, and at convergence. Explain
the final values you observe, working backwards from the goal.

� Compute V ?(s = 3) at the start state (s = 3, location=(0,3)), i.e., the converged
optimal value at the start. Explain what it means.

� Given that ever step has a penalty of -1, and reaching the goal state has a reward of +35,
can you compute the average reward per timestep under the optimal policy? Explain
your answer. (Hint: first compute the number of steps the agent needs on average to
reach the goal). If you do not manage to compute this number, you can assume
it is 1.0 in the remainder of your experiments.

� The goal state in the environment (s = 52) is terminal. Explain how your implementation
of dynamic programming deals with this issue, i.e., why does it still converge? (Hint:
check the code in Environment.py). Could you think of another way to solve this issue?

5

Algorithm 1: Tabular Q-value iteration (Dynamic Programming)

Input: Threshold η ∈ R+.
Result: The optimal value function Q?(s, a) and/or associated optimal policy π?(s).
Initialization: A state-action value table Q̂(s, a) = 0 ∀s ∈ S, a ∈ A
repeat

∆← 0
for each s ∈ S do

for each a ∈ A do
x← Q(s, a) /* Store current estimate */

Q̂(s, a)←
∑
s′ p(s

′|s, a) ·
(
r + γ ·maxa′ Q̂(s′, a′)

)
/* Eq. 1 */

∆← max(∆, |x− Q̂(s, a)|) /* Update max error */

end

end

until ∆ < η;

Q?(s, a) = Q̂(s, a) /* Converged at optimal value function */

π?(s) = arg maxaQ
?(s, a) ∀s ∈ S /* Optimal policy is greedy */

Return Q?(s, a) and/or π?(s).

6

2 Exploration

You will now switch to the (model-free) reinforcement learning setting. In this case, you no longer
have access to the model (like the real world, where executing an action permanently brings you to
the next state). You therefore no longer have access to the StochasticWindyGridworld.model()
function, and you can no longer sweep through all states. Instead, you have to move forward
from the current state, where you use the StochasticWindyGridworld.step() function.

Since you cannot sweep through all states anymore, you will proceed in episodes from the
start state. Compared to sweeping through the state space, you are now no longer guaranteed
to visit all states under a greedy policy. You therefore need to introduce exploration into your
action selection, to sometimes try something novel.

1. This first crucial step of any RL algorithm is the action selection. You decide to compare
two types of policies:

� The ε-greedy policy:

π(a|s) =

{
1.0− ε, if a = arg maxb∈A Q̂(s, b)

ε/(|A|), otherwise
(2)

In words, we select with small probability ε a random action, which ensures explo-
ration, and otherwise take the greedy action. The parameter ε allows you to scale the
amount of exploration (ε = 0 gives a greedy policy, ε = 1 gives a uniform/random
policy).

� The Boltzmann policy:

π(a|s) =
eQ̂(s,a)/τ∑
b∈A e

Q̂(s,b)/τ
(3)

where τ ∈ (0,∞) denotes a temperature parameter. This approach gives a higher
probability to actions with a higher current value estimate, but still ensures explo-
ration of other actions than the greedy one. The temperature τ allows you to scale
the amount of exploration: for τ → ∞ the policy becomes uniform/random (why?),
and for τ → 0 the policy becomes greedy.

2. The second crucial step of an RL algorithm is the update. After executing an action,
the environment gives you new data, in the form of the observed reward and next state.
Therefore, after timestep t you have observed data 〈st, at, rt, st+1〉. In the next part of the
assignment we will compare different ways to use this data to compute a new estimate for
the state-action value at st, at, but in this assignment we will use the 1-step Q-learning
update. We first compute the new back-up estimate/target Gt as

Gt = rt + γ ·max
a′

Q̂(st+1, a
′) (4)

and then apply the tabular learning update

Q̂(st, at)← Q̂(st, at) + α · [Gt − Q̂(st, at)] (5)

where α ∈ (0, 1] denotes the learning rate. For alpha → 0 learning is slow but stable,
while α → 1 makes learning fast but less stable. The optimal learning rate typically

7

lies somewhere in between. The learning rate is an important parameter in any learning
experiment, and typically needs to be tuned extensively.

You proceed with your experiments as follows:

a) Implement:

� Correctly complete the class QLearningAgent() in the file Q_learning.py.

– In init(), initialize a table with means Q(s, a) to 0.

– In select_action(), implement the above ε-greedy policy and softmax policy.
Note: we already provided argmax() and softmax() functions for you in Helper.py,
which are already imported into the file.

– In update(), implement the Q-learning update shown above.

� Correctly complete the function q_learning() in the file Q_learning.py. This function
should execute Q-learning, as shown in Algorithm 2. The function should return a list
with all the rewards observed at each timestep.

� Verify that your code works by running Q_learning.py. Observe how the agent explores
and learns. Plots the value estimates during execution, and observe how they change.

b) Experiment: You decide to perform a more systematic experiment, comparing ε-greedy and
Boltzmann policies with different settings for the exploration parameters (respectively ε and
temperature parameter τ).

� Write your experiment code in Experiment.py, using the q_learning() function you
wrote above.

� Try ε-greedy with epsilon = [0.01,0.05,0.2] and softmax with temps = [0.01,0.1,1.0].

� For each setting, average your results over 50 repetitions, and smooth your
learning curves. Plot the learning curves for each setting in the same graph. Add a
clear legend!

c) Write:

� Explain your method (with equations/algorithm boxes).

� Show a picture which compares both exploration methods for different values of ε and
τ .

� Interpret your results. Which method do you prefer? Does RL achieve the optimal
performance you found from Dynamic Programming? Explain why it does or doesn’t.

d) Bonus: When you want to show off, you can try to anneal ε and/or τ during training, which
more gradually shifts from exploration (ε close to 1, or high τ), to exploitation (ε or τ close to
0). You can find an example annealing function linear_anneal{} in Helper.py, which you
may use. Implement an annealing schedule, and compare its performance to your baseline
implementation with fixed ε or τ .

8

Algorithm 2: Tabular Q-learning.

Input: Exploration parameter, learning rate α ∈ (0, 1], discount parameter γ ∈ [0, 1],
maximum episode length T .

Q̂(s, a)← 0, ∀s ∈ S, a ∈ A. /* Initialize Q-value table */

while budget do
s0 ∼ p0(s) /* Sample initial state */

for t = 0...(T − 1) do
at ∼ π(a|st) /* Sample action, e.g., ε-greedy, softmax */

rt, st+1 ∼ p(r, s′|st, at) /* Simulate environment */

Q̂(st, at)← Q̂(st, at) + α · [rt + γ ·maxa′ Q̂(st+1, a
′)− Q̂(st, at)] /* Q update */

if st+1 is terminal then
break /* End of episode, reset */

end

end

end

Return: Q̂(s, a)

9

3 Back-up: On-policy versus off-policy target

The second important part of any RL algorithm is the way we back-up information. A major
distinction is between off-policy back-ups (like Q-learning) and on-policy back-ups (like SARSA).
We will first focus on the one-step case. The back-up equation for Q-learning was already
implemented in the previous assignment:

Gt = rt + γ ·max
a′

Q̂(st+1, a
′) (6)

Q̂(st, at)← Q̂(st, at) + α · [Gt − Q̂(st, at)] (7)

The back-up equation for SARSA, given observations 〈st, at, rt, st+1, at+1〉 is

Gt = rt + γ · Q̂(st+1, at+1) (8)

Q̂(st, at)← Q̂(st, at) + α · [Gt − Q̂(st, at)] (9)

The major difference between these two is the value they bootstrap at the next state. Q-
learning plugs in the value of the best possible action at the next state, and thereby attempts
to learn the value of the optimal policy. SARSA backs up the value of the action we actually
take (which may be exploratory and not the one with the currently optimal estimate). SARSA
therefore learns the value function of the policy we actually execute (which includes exploration).
Both approaches have their benefits and problems (see the textbook). Look closely at both above
equations to understand this difference.

� Implement:

– Correctly complete the class SarsaAgent() in the file SARSA.py.

* In init(), initialize a table with means Q(s, a) to 0.

* In select_action(), copy in your previous ε-greedy policy and softmax policy.

* In update(), implement the SARSA update shown above.

– Correctly complete the function sarsa() in the file SARSA.py. This function should
execute SARSA, as shown in Algorithm 3. The function should return a list with all
the rewards observed at each timestep.

– Run SARSA.py to verify that your implementation works. Plots the value estimates
during execution, and observe how they change.

� Experiment: You decide to perform a more systematic experiment, where you compare
Q-learning and SARSA for different learning rates.

– Write your experiment code in Experiment.py, using the q_learning() and sarsa()

functions you wrote above.

– Try both methods for learning_rates = [0.05,0.2,0.4].

– For each setting, average your results over 50 repetitions, and smooth your
learning curves. Plot the learning curves for all settings (Q-learning and SARSA
for each of the above learning rates) in the same graph. Add a clear legend!

� Write:

10

– Explain your method (with equations/algorithm boxes).

– Show a picture which compares both types of back-ups for different learning rates.

– Interpret your results. Which method do you prefer? Could you think of a situation
in which you would prefer the other method?

Algorithm 3: Tabular SARSA.

Input: Exploration parameter, learning rate α ∈ (0, 1], discount parameter γ ∈ [0, 1],
maximum episode length T .

Q̂(s, a)← 0,∀s ∈ S, a ∈ A. /* Initialize Q-value table */

while budget do
s0 ∼ p0(s) /* Sample initial state */

a0 ∼ π(a|s0) /* Sample action, e.g., ε-greedy or softmax */

for t = 0...(T − 1) do
rt, st+1 ∼ p(r, s′|st, at) /* Simulate environment */

at+1 ∼ π(a|st) /* Sample action, e.g., ε-greedy */

Q̂(st, at)← Q̂(st, at) + α · [rt + γ · Q̂(st+1, at+1)− Q̂(st, at)] /* 1-step SARSA */

if st+1 is terminal then
break /* Episode terminates */

end

end

end

Return: Q̂(s, a)

11

4 Back-up: Depth of target

The other important aspect of the back-up is its depth. So far, we have only looked at 1-step
method, which directly bootstrap a value estimate after one transition. Instead, we can also sum
multiple rewards in a trace before we bootstrap, which leads to n-step methods (n-step Q-learning
or n-step SARSA, depending on the way you bootstrap). You will use n-step Q-learning, which
computes the following target:

Gt =

n−1∑
i=0

rt+i + max
a′

Q(st+n, a
′) (10)

and again standard tabular update

Q̂(st, at)← Q̂(st, at) + α · [Gt − Q̂(st, at)] (11)

Not that, although it is called n-step Q-learning (due to the maximization over the last
action), it is not a full off-policy method, since the first n reward are of course sampled from the
current policy (and the target therefore mostly follows our behavioral policy).

On the other extreme, we can also omit bootstrapping altogether, and simply sum all rewards
up to the end of the episode (or up to some maximum timestep after which we terminate the
episode). The gives a Monte Carlo update:

Gt =

∞∑
i=0

rt+i (12)

Q̂(st, at)← Q̂(st, at) + α · [Gt − Q̂(st, at)] (13)

You will run experiments to compare different depths of the back-up target, from one-step
up to Monte Carlo targets.

� Implement:

– Correctly complete the class NstepQLearningAgent() in the file Nstep.py.

* In init(), initialize a table with means Q(s, a) to 0.

* In select_action(), copy in your previous ε-greedy policy and softmax policy.

* In update(), implement the n-step Q-learning update for each state-action pair
in states and actions.

– Run Nstep.py to verify that your method works. Observe the agent learning.

– Correctly complete the function n_step_Q() in the file Nstep.py. This function
should execute n-step Q-learning, as shown in Algorithm 4. The function should
return a list with all the rewards observed at each timestep.

– Correctly complete the class MonteCarloAgent() in the file MonteCarlo.py.

* In init(), initialize a table with means Q(s, a) to 0.

* In select_action(), copy in your previous ε-greedy policy and softmax policy.

* In update(), implement the Monte Carlo update for each state-action pair in
states and actions.

12

– Correctly complete the function monte_carlo() in the file MonteCarlo.py. This
function should execute Monte Carlo RL as shown in Algorithm 5. The function
should return a list with all the rewards observed at each timestep.

Run MonteCarlo.py to verify that your method works. Observe the agent learning,
while you plot the value estimates and optimal policy. Do you see a difference with
the previous RL methods?

� Experiment: You decide to perform a more systematic experiment, comparing different
back-up depths.

– Write your experiment code in Experiment.py, using the n_step_Q() and monte_carlo()

functions you wrote above.

– For n_step_Q(), try different back-up depths: ns = [1,3,5,10,20,100]. Also run
the Monte Carlo method.

– Plot the learning curves for each setting in the same graph. For each setting,
average your results over 50 repetitions, and smooth your learning curves.
Add a clear legend!

� Write:

– Explain your method (with equations/algorithm boxes).

– Show a picture with the relevant comparisons.

– Interpret your results. Which method learns faster initially? Which method has better
final performance? Give possible explanations for these observations.

13

Algorithm 4: Tabular n-step Q-learning

Input: Exploration parameter ε ∈ (0, 1], learning rate α ∈ (0, 1], discount parameter
γ ∈ [0, 1], maximum episode length T , target depth n.

Q̂(s, a)← 0,∀s ∈ S, a ∈ A. /* Initialize Q-value table */

while budget do
s0 ∼ p0(s) /* Sample initial state */

/// Collect episode
for t = 0...(T − 1) do

at ∼ π(a|st) /* Sample action, e.g., ε-greedy */

rt, st+1 ∼ p(r, s′|st, at) /* Simulate environment */

if st+1 is terminal then
break /* Episode terminates */

end

end
Tmax ← t+ 1 /* Tmax stores episode length */

/// Compute n-step targets and update
for t = 0...(Tmax − 1) do

m = min(n, Tmax − t) /* m is number of rewards left to sum */

if st+m is terminal then

Gt ←
∑m−1
i=0 (γ)i · rt+i /* n-step target without bootstrap */

else

Gt ←
∑m−1
i=0 (γ)i · rt+i + (γ)m ·maxa Q̂(st+m, a) /* n-step target */

end

Q̂(st, at)← Q̂(st, at) + α · [Gt − Q̂(st, at)] /* Update Q-table */

end

end

Return: Q̂(s, a)

14

Algorithm 5: Tabular Monte Carlo reinforcement learning.

Input: Exploration parameter ε ∈ (0, 1], learning rate α ∈ (0, 1], discount parameter
γ ∈ [0, 1], maximum episode length T .

Q̂(s, a)← 0,∀s ∈ S, a ∈ A. /* Initialize Q-value table */

while budget do
s0 ∼ p0(s) /* Sample initial state */

for t = 0...(T − 1) do
at ∼ π(a|st) /* Sample action, e.g., ε-greedy */

rt, st+1 ∼ p(r, s′|st, at) /* Simulate environment */

if st+1 is terminal then
break /* Episode terminates */

end

end
Gt+1 ← 0 /* Start reward summation from 0 */

for i = t...0 do
Gi ← ri + γ ·Gi+1 /* Compute Monte Carlo target at each step */

Q̂(si, ai)← Q̂(si, ai) + α · [Gi − Q̂(si, ai)] /* Update Q-table */

end

end

Return: Q̂(s, a)

15

5 Reflection

You did a lot of experiments with Dynamic Programming and various aspects of tabular model-
free RL algorithms. Write a reflection/discussion of your experiments, which discusses the fol-
lowing topics:

� DP versus RL: What is a strength of Dynamic Programming compared to RL? And what
is a potential weakness?

� Exploration: Which exploration method do you prefer: ε-greedy of softmax exploration?
Could you think of a better way to explore?

� Back-up, on-policy versus off-policy: What are the benefits and problems of on-policy
(SARSA) or off-policy (Q-learning) updates? Explain their difference. Is n-step Q-learning
an on-policy or off-policy method? Explain your answer.

� Back-up, target depth: What are the benefits and problems of one-step, n-step and
MC methods? Explain the bias-variance trade-off. Which method do you prefer for this
task? Which method propagates information faster? Which method may converge on the
optimal policy?

� Curse of dimensionality: You extensively studied tabular RL algorithms. What is their
benefit? And when will they run into trouble? Explain the curse of dimensionality. How
may machine learning methods, like deep learning, help to overcome this issue?

16

6 Bonus (optional)

The assignments on the previous page are enough to pass the assignment with a high grade
(when you do well on all of them). Should you however want to really impress us, then you are
very welcome to show additional experiments.

� Maybe you can do additional experiments with learning rates and exploration parameters.
You could try the annealing schedule, as already mentioned in the Exploration assignment.

� Maybe you have a better method for exploration, like ”count-based exploration”, which
you would like to implement.

� Maybe you have another task that you would like to try.

� Maybe you have another idea that you would like to try, or you find something online. Feel
free to add your own thoughts and experiments.

17

	Dynamic Programming
	Exploration
	Back-up: On-policy versus off-policy target
	Back-up: Depth of target
	Reflection
	Bonus (optional)

