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Different Approaches

Model-free

e \alue-based [2,3]

e Policy-based [4]
Model-based

e | earned [5]

e Perfect; Two-Agent [6]
Multi-agent [7]

Hierarchical Reinforcement Learning (Sub-go

Meta Learning [9]






Overview

Intuition

Options Framework
Tabular Algorithms
Deep Algorithms

Environments



Intuition

e How do you travel to a far-away friend?
You walk to your bike, you cycle to the train station, take
one or two train rides, and go to your friends house.

e Three levels of abstraction



Intuition
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e How does RL do this?
It takes a step, and another step, and another step, and
another step, and another step, ...

e One level



History



Intuition

e Hierarchical RL allows “temporal abstraction,” reasoning
with actions at different time scales, short actions, and
long actions, fine grain and coarse grain



Macros

* A primitive action is a regular, single-step, action

e A macro-action is any multi-step action (sub-policy), such
as: go from door A to door B

* May be open-ended




Optimality

* Note that the model-free small-step policy is likely better
(more precise) than a policy incorporating a few large
steps.

e HRL may be faster, but also coarser
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Options Framework

1999 [Sutton, Precup, Singh]

Semi Markov Decision Process, allowing different times between actions, nested
actions

I Initiation set of start states of the option
7, Subpolicy of the option (the primitive actions that it consists of)

P, Termination condition for each state if it terminates in that state

All three must be provided by the programmer



Options and Actions

Primitive Actions

Ordinary States

Options: Subpolicies of primitive actions
Initiation states and Termination states (Goal States)

Main Policy over Actions and Options



The Word “Goal”

e Goal can mean the Objective of RL

(“Find the optimal policy that maximizes the expected
cumulative future reward”)

* Goal can also mean a certain State of the MDP to be
reached
(“The Dijkstra algorithm computes the shortest path from
initial state to goal state”)



Tabular Algorithms

STRIPS

HAM

MAXQ

Abstraction Hierarchies

Relation with Planning, and thus with Model-based



STRIPS

Stanford Research Institute
Problem Solver

[Fikes & Nilsson, 1971]
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STRIPS Representation

» States are specified as conjunctions of predicates:
o Start state: At(home) A Sells(SM, Milk) A Sells(SM, Bananas) A Sells(HW, drill)
e Goal state: At(home) A Have(Milk) A Have(Banana) A Have(drill)
* Actions are described as preconditions and effects:
* Go(x,y)
e Precond: At(x)
o Effect: 7At(x) A At(y)
e Buy(x, store)
e Precond: At(store) A Sells(store, x)

e Effect: Have(x)

* Planning as search



MAXQ

e [Thomas Dietterich, 1999]
e Hierarchical Decomposition of MDP and Value function

* Programmer defines subgoals and subpolicies

e MAXQ-Q-learning 4 |R G
3 |10
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Abstraction Hierarchies

e [Knoblock 1994]: “Automatically generating abstractions
for planning”

e Automated subgoal finding (smaller subproblems)
* However, [Backstrom & Jonsson 1995]: "Planning with

Abstraction Hierarchies can be exponentially less
efficient”



Computational Problem

 Enumerating the state space of an MDP is exponential in
the size of the problem

* Enumerating all possible subgoals, or all possible
subpolicies, is also exponential in the size of the problem

e Using an exponential method to find speedups in an
exponential problem may not be what you want

e Use domain knowledge [not general]

e Use deep learning



Deep Learning

Feudal
Option Critic
STRAW
HIRO

HAC

AMIGo

Intrinsic IMGEP



Feudal

[Dayan & Hinton 1993]

Hierarchical Q-learning of sub-
managers learning to satisfy
demands by managers

[Vezhnevets et al. 2017]

FeUdal Networks, using
decoupled manager and worker
modules, working at different
time scales




Feudal Networks

[Vezhnevets et al. 2017]

Manager computes latent state representation and goal
vector

LSTM
Learning within the modules, to preserve local meaning
Montezuma’s Revenge, other ALE, DeepMind Lab

Results show improvements over Flat RL (A3C)



Option Critic

[Bacon et al. 2016] The

Option-Critic Architecture -1
Policy-gradient theorem for

options, learn subpolicies and

subgoals automatically

Number of options IS Termination Probabilities

hyperparameter 4 options

Good results on some ALE



STRAW

[Vezhnevets et al. 2016] Strategic Attentive Writer for
Learning Macro-Actions

Learn implicit plans from environment
PacMan, Frostbite

Text problems



Hiro

[Nachum et al. 2018] Data Efficient Hierarchical Reinforcement Learning
Sample efficient, find subgoals and subpolicies
Compute upper and goal-conditioned lower levels in parallel

Off-policy (unstable lower levels)
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Hiro
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Figure 2: The design and basic training of HIRO. The lower-level policy interacts directly with the
environment. The higher-level policy instructs the lower-level policy via high-level actions, or goals,
g: € R% which it samples anew every c steps. On intermediate steps, a fixed goal transition function
h determines the next step’s goal. The goal simply instructs the lower-level policy to reach specific
states, which allows the lower-level policy to easily learn from prior off-policy experience.



HAC

e [Levy et al. 2017] Learning multi-level hierarchies with
hindsight

e QOvercomes instability of joint learning of upper and lower
levels



I1; : State, Goal State — Action
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Figure 1: An ant agent uses a 3-level hierarchy to traverse though rooms to reach its goal, represented

by the yellow cube. I, uses as input the current state (joint positions 6 and velocities 6) and goal
state (yellow box) and outputs a subgoal state (green box) for II; to achieve. II; takes in the current
state and its goal state (green box) and outputs a subgoal state (purple box) for Il to achieve. I,
takes in the current state and goal state (purple box) and outputs a vector of joint torques.
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Figure 4: Average success rates for 3-level (red), 2-level agent (blue), and flat (green) agents in each
task. The error bars show 1 standard deviation.
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Figure 5: Figure compares the performance of HAC (2 Levels) and HIRO. The charts show the
average success rate and 1 standard deviation.




AMIGo

e [Campero et al. 2021] Adversarially motivated intrinsic
goals

e Teacher should learn appropriate tasks for student, not
too hard, not too easy



AMIGo
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Figure 1: Training with AMIGO consists of combining two modules: a goal-generating teacher and
a goal-conditioned student policy, whereby the teacher provides intrinsic goals to supplement the
extrinsic goals from the environment. In our experimental set-up, the teacher is a dimensionality-
preserving convolutional network which, at the beginning of an episode, outputs a location in absolute
(x,y) coordinates. These are provided as a one-hot indicator in an extra channel of the student’s
convolutional neural network, which in turn outputs the agent’s actions.



Universal Value Function

e (Goal-conditioned
e Universal Value Function [Schaul et al. 2015]

* Value functions that approximate not just on state but
also on goal Vs, g)

* Related to Multi-task learning



Intrinsic Motivation

With feedback | Without feedback
Active | Reinforcement | Intrinsic motivation
Passive | Supervised Unsupervised

e [Aubret et al. 2019] goal parameterization, entropy, curriculum

e [Singh et al. 2005] novelty, curiosity
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Figure 1: Agent-Environment Interaction in RL. A: The usual view. B: An elaboration.



What do you think?



Conclusion

HRL follows human problem solving intuition

Works well if subgoals and subpolicies can be easily specified
with domain knowledge (domain-specific)

Classical Tabular methods suffer from combinatorial explosion
of states/subgoals and actions/subpolicies for general methods

Some Deep Learning methods work; few epochs (expensive)
Good match with Team/Multi-agent concepts

Active field of research
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Montezuma’s Revenge

Real score:
1,992,800
Y (score counter rolled over)

o




StarCraft




Questions?




