Master
Reinforcement Learning 2022
Lecture 6;
Two-Agent Self-Play

Aske Plaat

Different Approaches

Model-free

e \alue-based [2,3]
e Policy-based [4]
Model-based

e | earned [5]

e Perfect; Two-Ageh

Multi-agent [7]
Hierarchical Reinforcement Learning (Sub-goals) [8]

Meta Learning [9]

Motivation

Overview

MCTS: a well-known RL planner

What if Internal Transition Function is Perfect
& your Environment is yourself?

AlphaZero

Curriculum Learning

What if Internal Transition
function is Perfect?

e Previous chapter showed that accuracy of model is important.
What if we have a perfect transition function?
What if we can also use it to learn?

e Then World Champions get beaten:
e Backgammon
e Go
e Chess
e Shogi

e Today is about Best Case, when everything fits together and works

Self-Play is old

Most two-agent board game-playing programs
choose (versions of) themselves as opponent for
simulation or learning.

Minimax (1949) is Self-Play

Samuel’s checkers players (1950-1960) used self-
play outcomes for modifying evaluation weigths.

TD-Gammon (1992) used Self-Play learning

However, Self-Play is potentially unstable due to
feedback and deadly triad

It is overcome in AlphaGo in different ways

Surprising Self-Play

* Find high quality examples to train RL on using RL. RL at
three levels

Loudspeaker

Feedback loop
causes howling
\ sound.

 RL suffers from feedback, feedback creates instability

e What methods have been used to overcome feedback?

AlphalZero:
Three Levels of Self Play

1. Move-level self play (minimax, MCTYS)
2. Example-level self play (learning, Actor Ciritic)

3. Game-level self play (curriculum, self transcending player)

1. Move-level self
play

Minimax

 Assume you play best move, and opponent has your

knowledge
&

Two-agent zero sum: my win is your loss
Max/min/max/min/max/min

Max: Square

Min: Circle

b=branching factor, d=search depth

Minimax

INF = 99999
def eval(n):
if n[type’] == ’'LEAF’:
return n[’value’]
else:

error (" Callingyeval not on,LEAF”)

def minimax(n):

if n['type’] == "LEAF’:
return eval(n)

elif n[’'type’] == "MAX":
g = —INF

for ¢ in n[’children’]:
g = max(g, minimax(c))
elif n[’type’] == '"MIN":
g = INF
for ¢ in n[’children’]:

g = min(g, minimax(c))
else:

error ("Wrong,nodetype”)
return g

print ("Minimaxgvalue:,”, minimax(root))

Listing 4.2: Minimax code

State Space Complexity

Name board state space | zero sum | information turn
Chess 8 x 8 10% zero sum perfect turn
Checkers 8 x 8 1018 zero sum perfect turn
Othello 8 x 8 10°° zero sum perfect turn
Backgammon 24 1070 zero sum chance turn
Go 19 x 19 10170 zero sum perfect turn
Shogi 9x9 107 zero sum perfect turn
Poker card 10'°! non-zero | imperfect turn
StarCraft real time strategy 10168 non-zero | imperfect | simultaneous

e 10°47... 1 ns/position -> 10738 s -> 1030 earth-year
10721 times the age of the known universe/position

Heuristics

Material (pawns, bishops, knights, ...)
Mobility (# actions)
Center control

King Safety

)|
F 3

3
a

IE
D Do [imf

-

Do

Alpha-Beta

ri 3

cl 3| d|l 6| e| 2 f

e A cutoff is an action (e) that is so strong for my opponent that | will
not play b (because a is better) and hence we can stop searching b

After Chess?

Go

Name board state space | zero sum | information turn
Chess 8 x 8 10% zero sum perfect turn
Checkers 8 x 8 10'8 zero sum perfect turn
Othello 8 x 8 100 zero sum perfect turn
Backgammon 24 107V zero sum chance turn
Go 19 x 19 10170 zero sum perfect turn
Shogi 9x9 107" zero sum perfect turn
Poker card 1016t non-zero | imperfect turn
StarCraft real time strategy 10168 non-zero | imperfect | simultaneous

» Worldwide most popular combinatorial game of strategy

e Much more complex than Chess

Heuristic Planning

e Successful in games with tactical play where efficient
heuristics can be found

 Pieces move, and material is a good indicator of the
score

* In Go, board is large, pieces do not move, material is
typically balanced, and “influence” turned out to be
difficult to program efficiently

w..

:‘:’,‘h‘ ')7 - 0 ["
;b{\:; » ; ﬂ A 7 1 . 4
W -~ [:— A > K ’ "" KZ ﬂ
Now-what?

Traditional Go program

e Minimax

 Forward Pruning: only try “sensible” actions:
connect, defend, territory jump
Like a knowledge-based expert system

A B c D E F 3 H J K L (] N o P Q R s T |

=1z
£ |

* Influence calculation for scoring

. . JTOT IO
J g 8 0 e o 1
* Weak amateur level (10 kyu) : ‘a—# el !

* Years of no real progress

e Then: MCTS

Adaptive Sampling

e No Efficient Heuristics
for influence

* Rigid Search does not
work well in large, flat
state space

Monte Carlo playouts

Current
Game o

Monte Carlo Playouts

 Chess: b=10. Full width
e Go: b=200. Forward pruning

* Playout: Not search Tree b*d but search Path d

Figure 4.1: Searching a Tree vs a Path

Monte Carlo vs Minimax

e Minimax: Best of all actions

 Monte Carlo: Average of random playouts

Figure 4.1: Searching a Tree vs a Path

Monte Carlo Tree Search

 Brigmann 1993 tried all playouts from the root (flat)
Results were better than random, but not great -> MC

 Coulom 2006 (after work of others) tried it recursively, in
a tree. This did give good results -> MCTS

e Kocsis & Szepesvari 2006 suggested the UCT selection
rule to balance exploration and exploitation.
(Based on extensive work in multi-armed bandit theory)

Four Operations

Run continuously in the allotted time

|

Selection

> Expansion

(10)
() O‘Q

@@0’@

Us

(a) SELECT

vg| o,

(b) EXPAND

Simulation

> Back-propagation

Us

(&)

A

(¢c) PLAYOUT (d) BACKUP
Figure 1: One iteration of MCTS.

UCT Selection formula

UCT, = winra Cp* nssj

Select the child j with the highest UCT value

Winrate is for exploitation of what is known to be good
Newness is for exploration of lesser-searched subtrees
Larger Cp means more exploration

Upper Confidence bounds applied to Trees

Selection

/I

Example

Expansion Simulation Backpropagation

)
)) G} Q. o

@

coﬁ“b OO G Gb OOFTO®

@: ® @ ® @

w:1,1,2
v:1,2,3

+ d|+ el -
1
Select r

expand a, playout a -> d=+, update
a&r win++, Visit++

2
Selectr

expand b, playout b -> e=-, update
b&r, visit++

select UCT(a) 1/1+1*sqrt(in 1/1) =1,
UCT(b) 0/1+1*sqrt(In 1/1)=0

Playout a -> c=+, update a&r, win++,
visit++

4
Selectr

select UCT(a) 2/2+1*sqgrt(In 2/2) = 1.588,
UCT(b) 0/1+1*sgrt(In 2/1)=0.832

expand c, playout c=+, update c&aé&r,
win++, Visit++

Tree Shape

R i R B A i Y O Y (B R .+ B
JRERR SRRRA SRR SRERR SERRR SRR R

11{EH TR

rating

6 dan

5 dan -

4 dan

3 dan 7

2 dan 1

1 dan

I kyu

2 kyu -

Impact MCTS playing

strength Go programs

2007

2008

2009

2010

2011

2012 vyear

MCTS Go

Go Al Strength History

MCTS + Val N AlphaGo V25g¢
superhuman + Value Net AlphaGo V18 ./

A Fine Art
top pro AlphaGo V13 4~ o

9d/weak pro e Deep Zen

MCTS - o Len V6

7d
Zenva "% Crazystone DL

4d

1d &
Classical

e Many Faces

-
——
-

e
10k Handtalk -

20k
1995 2000 2005 2010 2015 2020

Questions?

2. Example-level self
play

AlphaGo 1 2 3

AlphaGo: The Champion

AlphaGo Zero: Tabula Rasa AlphaGo Zero
The Self-Learner

Starting fromsératch

AlphaZero: Three games: Chess, Shogi, Go.
The Generalist

AlphaGo Structure

e 4 nets Rollout policy SL policy network RL policy network Value network

P P,
 fast rollout policy

* slow sl policy

* slow rl policy A
e value net Traditional way to a .

collect training data

* 3 learning methods
Human expert positions
e supervised small patterns fast rollout policy

* supervised database grandmaster games

* reinforcement from database de-correlated self-play games

P P Vo

[R5 == B0

3
©

Self-play positions

Generating a lot of additional
training data by self-play.

MIOMIaU [einaN

eledg

Policy & Value & Playout

U v U v v U
() () (%) : y y va) (vs) (vs) (v7) : ° “

/3 , A

@ 0 @ G Uq Us Ug U7 U8 ™ Us : Us U7
‘ N8
Us (Y :_?Ejj A Us 7 vy

(a) SELECT (b) EXPAND (c) PLAYOUT (d) BACKUP

Figure 1: One iteration of MCTS.

AlphaGo Structure

AlphaGo Overview

based on: Silver, D. et al. Nature Vol 529, 2016
copyright. Bob van den Hoek, 2016

Policy Network

Expert Games

130 000 Games
30 M Positions

Supervised Learning

SL Policy
Position --> Next Move
Accuracy: 56%

Fast Policy Network

Expert Games

140 000 Patterns
130 000 Games
30M Positions

Supervised Learning

Fast Policy
Pattern --> Next Move
Accuracy: 24%

AlphaGo

p . Self-Play Games Reinforcement Learning
Reinforcement Learning
4 1.3 M Games by RL Policy
Poli Ccy Network various versions Position --> Next Move
of RL Policy Wins 80% vs. SL Policy
Input Board Position
as 19 x 19 Image
48 Feature Planes
Self-Play Games Reinforcement Learning
30 M Positions Position --> Win Probability
by fixed version 15 000 times faster than
of RL Policy MCTS Rollouts evaluations

Elo Rating

3,500 -

3,000 <

2,500 +

2,000 +

1,500 +

1,000 +

500 +

AlphaGo Performance

paInquisip

ooeydyy
ogeyd)y

INH ue4

auog Aze1n

yoed

obeny

o9nuy

3,500+

3,000+

2,500+

2,000+

1,500+

1,000+

500+

0-

Rollouts @
Value network @
Policy network @

3,500+

3,000+

2,500+

2,000+

1,500+

1,000+

5004

0.
Threads 1 2 4 8 1632 40 p— 40— 12 24 40 64
GPUs ¢ 8 i1 1 2 4 8 64112176280
L Il |

Single machine Distributed

AlphaGo Matches

e 2015 Fan Hui London |
e 2016 Lee Sedol Seoul

e 2017 Ke Jie Wuzhen

At last — a computer program that

ALL SYSTEMS GO

9 WAL Toe

DIV 08 WSRO 1TRET POPILAN SOTNCE
SONGRBIRDS SAFEGUARD WHEN GENES
A LA CARTE TRANSPARENCY GOT “SELFISH"

na a; nact 0 L]

ARTICLE

Mastering the game of Go with deep
neural networks and tree search

ARTICLE

Mastering the game of Go without
human knowledge

AlphaGo Zero

e Faster
days, not weeks

Al aﬁx%%p
* Better pJS?arting from ch

Higher Elo

* Elegant
1 network

NOUG A~ WN =

Self-Play Loop

 Generate a sequence of own training examples

games: self play

tournaments: (s, 7T, z) examples new net @’

for it in range (1, max_iterations): # do a curric. of self—play tourn.

for

net

game in range(1, max_games): # play a tourn. of games; then train

trim(triples) # if buffer full: replace old entries

while not game_over(): # generate the moves of one game
game_pairs += mcts(eval(net)) # move is a (state,baction) pair

triples += add(games_pairs, game_outcome()) # add win/lose to buf

= train(net, triples) # retrain with (state,baction,6outc) triples

AlphaGo Zero Overview

e Zero-knowledge
 One net (double-headed)
* One learning method: Self-Play

e Tabula Rasa: Only the rules & input/output layers, zero
heuristics, zero grandmaster games

e Curriculum learning

Elo Rating

Elo Rating

5000

4000

3000 -

2000

1000 -

-1000

-2000

2000

1000

-1000

~2000

AlphaGo Zero Performance

0 days
AlphaGo Zero has no prior knowledge of the
game and only the basic rules as an input.

10 15 20 25 30 35 40

s AlphaGo Zero 40 blocks «««+ AlphaGo Lee weses AlphaGo Master

-, ————

21 days

i AlphaGo Zero reaches the level of AlphaGo Master, the
r version that defeated 60 top professionals online and

' world champion Ke Jie in 3 out of 3 games in 2017.

0 5 10 15 20 25 30 35 40

wee AlphaGo Zero 40 blocks «=«+ AlphaGo Lee «s«« AlphaGo Master

Elo Rating

5000 |
4000 et
-
3000 /
A
2000 f
' 3 days
1000 ‘ AlphaGo Zero surpasses the abilities of AlphaGo
- Lee, the version that beat world champion Lee Sedol
| in 4 out of 5 games in 2016.
J
-1000 1"
-2000
0 5 10 15 20 25 a0 35 40
we AlphaGo Zero 40 blocks «««+ AlphaGo Lee s=ss AlphaGo Master
5000 -_--_-_----_--._--------_-_-_--._.---_..‘“.---’---‘:_::-::‘::.‘.':---_:-f...
_/-/7 s
4000 it
,,,,,, e e e e e e e e e e e
s I
€ 2000 /
3 ‘r 40 days
g 1000 } AlphaGo Zero surpasses all other versions of AlphaGo
é and, arguably, becomes the best Go player in the world.
.‘ It does this entirely from self-play, with no human
1000 - [intervention and using no historical data.
|
~2000 - |
0 5 10 15 20 25 30 35 40

e AphaGo Zero 40 blocks <=+ AlphaGo Lee ssse AlphaGo Master

AlphaGo Zero Performance

a b
5.000‘ .__._-._.--._----_---::._..-._.:_.;.-:;___,__.J,_._,.__,.._,..__.__....—_—.t::'.‘._-_T..—.
4,000 /r e
3,000 -

£ { e

® 2,000{ / £

O] ’

= 1,000 | 3

9 n‘ - AlphaGo Zero 40 blocks
-1,000 - (-+« AlphaGo Master
2,000/ -+« AlphaGo Lee

0 5 10 15 20 25 30 35 40
Days

AlphaGo Zero Performance

Elo Rating

4000 -

3000 -

2000

1000 +

-~1000 -

-2000

40 days — AlphaGo Zero surpasses all
previous versions, becomes the best
Go player in the world

-

36 hours — AlphaGo Zero 72 hours — AlphaGo Zero

reaches level of Alpha Go beats Alpha Go Lee, 100:0
Lee, which beat world S

champion Lee Sedol in 2016

Training days

0 5 10 15 20 25 30 35 40

w= AlphaGo Zero 40 blocks «««« AlphaGo Lee «=«+ AlphaGo Master

AlphaGo Zero Structure

53

H

* 1 net: ResNet with policy head and value head l
Combined loss-function

e 1 learning: RL Self-Play ;
0 4

e Tabula Rasa

AlphaGo Zero Structure

Input: Board state (encoded)
One convolution block

128 filters (3X3 kernel, stride 1) + Batch norm +
relu

19 Res blocks

Each block has 128 filters (3X3 kernel, stride 1) +
Batch norm + relu + 128 filters (3X3 kernel, stride
1) + Batch norm + residual connection + relu

One Output Block

Policy: convo of 32 filters (1X1 kernel, stride 1) +
batch norm + relu + linear + softmax

0 y Value: convo of 3 filters (1X1 kernel, stride 1) +
f batch norm + relu + linear + relu + linear + tanh

Outputs: P — Policy, v - value

AlphaGo Zero Networks

AGO0: Comparison of Various Neural Network Architectures

4 5001
4 0004
o2
T 3,500+
o
w
3,000 4
2,500
% H 3 H
< Q o &
’b\A Q/(/OO c}O
bo ‘OQ' Q'b\ Q,Q/
o) & 15

[Silver et al. 2017b]

AlphaGo Zero

* One net
e No Random Playout

e No Games database

Two ngitions

2072

e Why Faster than AlphaGo?

L using RL for examples) ever be
SqQared!

e How can Self-Play
Stable? Deadly Tr;

AlphaGo Zero

Loudspeaker

o Stable
R\ \ | causes howin
* Extra Exploration lo \ | sounc.

e De-correlation

e How?

e MCTS & Noise & Exploration & Replay Buffer & Many
games

 AlphaGo Zero’s nets are not optimized against themselves,
but against MCTS-improved versions of themselves

AlphaGo Zero

e How Faster?

e Curriculum learning

3. Game-level self
play

Curriculum Learning

AlphaGo Zero learns better than AlphaGo
AlphaGo Zero learns faster than AlphaGo. Why?
Curriculum learning: start with easy examples

Many small steps are faster than one large step

Learning to Play

g 3 hours
i 55 B8 O I A K) A TS : . '
1 0 L | AlphaGo Zero plays like a human beginner,
: 59 - A Ep N e dl N forgoing long term strategy to focus on
BT [‘_15 greedily capturing as many stones as
B possible.
K& "; A i',“-
F 1P v
) '
-0 °
-
OO D6

5205825883818

Captured Stones

Learning to Play

ATEIT I 19 hours
20 (2 [26) 28 st
QO v e e o o v e 2D AlphaGo Zero has learnt the fundamentals of
80 60) €2 el 55 Jepeted N w2 P - .

O - -+ more advanced Go strategies such as

o) - e A . ’
o @@t life-and-death, influence and territory.
7 - @ity <00 50 I I
: IS SR, o [-2 i lf i L
B vttt b o I 0
B o i [B 1
14 -

Learning to Play

A e 70 hours
———1 o) &
’, e f ,? 29, 2x ?3‘ ; AlphaGo Zero plays at super-human level.
REEEER fh "SR The game is disciplined and involves
ANHE B {‘*.-- 10 QJ - ?s! multiple challenges across the board.
1
i O I Y %_}_'_
Ed ol B ST 7 A I o AN ol il
HEREENE S 4 BRSPS
S Gl b Ll Lo @
S OO) - > _j;;' L LITD
D 000 *"}f"_'j:“:‘_ L@
i i RE T

®«Q
Captured Stones

o ——v

s =

- ——e
=
D =

1

Bt &

000

o

s
3

-

~
I
I

Oad
H

11 |
A
(0}
o = -
'uui--—- -
(1od—y |
[

r—
0

I I 24

]

_.—.—.’q h
48 60 I

%

J72

(0[]

|
#“‘1
| N HN 8

v 1

24

e

|
=
.3'£
690

90
@ =@
a0

2.86:68:62:8

AlphaZero
General

A DIGITAL

: PRODIGY

AlphaZero teaches
itsalf chess, shogi, and Go
pp. 3067, 1118, & 140

AlphaZero Overview

e Same net, same search, same tabula rasa self-play

e Different Input/Output layers

e Go, Chess, Shogi

[IE] S|

(

AlphaZero Structure

Input: Board state (encoded)
One convolution block

128 filters (3X3 kernel, stride 1) + Batch norm +
relu

19 Res blocks

Each block has 128 filters (3X3 kernel, stride 1) +
Batch norm + relu + 128 filters (3X3 kernel, stride
1) + Batch norm + residual connection + relu

One Output Block

Policy: convo of 32 filters (1X1 kernel, stride 1) +
batch norm + relu + linear + softmax

0 y Value: convo of 3 filters (1X1 kernel, stride 1) +
f batch norm + relu + linear + relu + linear + tanh

Outputs: P — Policy, v - value

AlphaZero Performance

Chess Shogi Go

AlphaZero vs. Stockfish AlphaZero vs. EImo AlphaZero vs. AGO

W:29.0% D:70.6% L:0.4% W:84.2% D:2.2% L:13.6% W:68.9% L:31.1%

O Il ' == @000
| | I

2.0% D:97.2% L:0.8% W:98.2% D:0.8% L:1.8% W:53.7% L:46.3%

AZ wins [l AZdraws AZloses I Az white() AZblack @

AlphaZero Performance

5000 Chess . Shogi ! &
4000 1 1__/_/' il /
3000 +
u_? - AlphaZero
2000 1 - AlphaZero 1 —— AlphaZero [- AlphaGo Zero
1000 + —— Stockfish T — EImo m — AlphaGo Lee
0 . L i L . L

0 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700
Thousands of Steps Thousands of Steps Thousands of Steps

AlphaZero Conclusions

First time learning, neural nets, and MCTS work in Chess
Decades of heuristic planning research are surpassed

Three Games share a general essence, since same
architecture works (except 1/0)

Not same net. Net trained for Chess does not work for
Shogi

First architecture achieving very high performance in three
games

Curriculum and other
learning

Curriculum Learning &
Friends

Learning is Generalization from example to example
Curriculum learning easy to hard concepts
Multi-task learning two tasks at the same time

Transfer learning from problem to problem

Game State

"WHAT IS A ‘GAME STATE' B

1if black stone here
O if black stone not here

Current position of 19 x 19 x 17 stack
black’s stones

19

..and for the previous
/ time periods

Current position of
white's stones

~..and for the previous
~ |/ time periods

Al Tif black to play
All O if white to play

K This stack is the input to the deep neural network j

ALPHAGO ZERO CHEAT SHEET

The training pipeline for AlphaGo Zero consists of three stages, executed in parallel

= (RETRAIN NETWORK) /EVALUATE NETWORK

(SELF PLAY

Cunrent position of
black's stones

Create a ‘training set’

Optimise the network weights

Test to see if the new network is stronger

The best current player plays 25.000 games against itself A TRAINING LOOP

Play 400 gomes between the latest neural network and the current best
neural network

and for the previous

s

See MCTS section to understand how AlphaGo Zero selects each move

Sample ¢ mini-batch of 2048 positions from the lost 500.000 gomes.

Retroin the cunrent neural network on these positions

At each move, the following information is stored stotes are the nput Network Architecture’)

- 71 Y

- The game

Loss function
Compares predctions from the neundl network with the search probabities

p Cross-entropy Tc

PREDICTIONS +

ACTUAL

The winner

The search probobilities

(From the MCTS)

game state

*1if this glayen won, <14

7 fime pe:

select their moves, with their respective neundl Current

white's stones

Latest ployer must win 55% of games fo be declared the new best player and fon Thapraskous
AT black fo play 7 time periods

After every 1.000 training loops, evaluate the network

-

| Al O f white to play —

\ This stack is the input to the deep neural network
N

" THE DEEP NEURAL NETWORK ARCHITECTURE

How AlphaGo Zero assesses new positions

i

The policy head

The network learns “tabula rasa’ (From a blank slate) 19x

move logi probabities

for pass)

At no point is the network trained using human knowledge or expert moves

The network
The value head proyem

geme value for cur

(SR}

’ N N-Em

Hdden layer size 256

A residual layer

Em .

N N-EN
Rectifler non
N N

X ' NEE N .

Ineanty

4O resdual loyers

256 convolutional
Fiters (343

A convolutional layer
. EmuoEm
t EE N-Em

R
"/MONTE CARLO TREE SEARCH (MCTS)

How AlphaGo Zero chooses its next move
First, run the following simulation

1.600 times..

Start at the root node of the tree (the current game state)

ot game stcle

1. Choose the action that maximises..

Nely+1
W=2.5+0.2
Q=2.7/5
P=0.6

..then select a move

Stochastically (for exploratory play)
Choose the action from the current state from the distribution

- N%

where T is G femperature parameter, controling explonation

Q+U.

4 N that

o been
il
i the simulation, U dominates (more explonation).
en Q is more importent (less exploration)
N=0 2. Continue until a leaf node is reached
o W0 o fhe newdd
W=0 Q-0 two things

p Move probabities

V Voueof

fate (Fon the current player)

re attached to the ne

The move

rom the leaf node

N=10+1
We5.4+0.2 _
Q=5.6/1 3. Backup previous edges
- P:0.5 Each edge that was fraversed fo get o fhe leaf node is updated

as folows:

N—N+1
W—oW+y
Q = W/N

Other points

£\
After 1,600 simuations, the move can either be chosen) 4 e e e
N+800 . for calculating subsequent moves
Deterministically (for competitive play) 2600
Choose the action from the cunrent state with greatest N N-2p0 - The rest of the tree is discarded
s g \
)) ()

AlphaGo Performance

Go Al Strength History

MCTS + Val N AlphaGo V25¢
superhuman + Value Net AlphaGo V18‘/'

v Fine Art
top pro AlphaGo V13

9d/weak pro e Deep Zen

MCTS Zen V5 ° Zen V6

Zen V4 ,-—"" Crazystone DL

7d

4d

1d
Classical

4k Many Faces

-
-
-
== |

10k Handtalk -

20k
1995 2000 2005 2010 2015 2020

Open Source AlphaZero
Reimplementations

e |eela

e ELF Facebook

e AlphaZero General Stanford

e PhoenixGo Tencent

e PolyGames Facebook

