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Different Approaches
• Model-free


• Value-based [2,3]


• Policy-based [4]


• Model-based 


• Learned [5]


• Perfect; Two-Agent [6]


• Multi-agent [7]


• Hierarchical Reinforcement Learning (Sub-goals) [8]


• Meta Learning [9]



Motivation



Overview

• MCTS: a well-known RL planner 


• What if Internal Transition Function is Perfect  
& your Environment is yourself?


• AlphaZero


• Curriculum Learning



What if Internal Transition 
function is Perfect?

• Previous chapter showed that accuracy of model is important.  
What if we have a perfect transition function? 
What if we can also use it to learn?


• Then World Champions get beaten:


• Backgammon


• Go


• Chess


• Shogi


• Today is about Best Case, when everything fits together and works



Self-Play is old
• Most two-agent board game-playing programs 

choose (versions of) themselves as opponent for 
simulation or learning.


• Minimax (1949) is Self-Play


• Samuel’s checkers players (1950-1960) used self-
play outcomes for modifying evaluation weigths.


• TD-Gammon (1992) used Self-Play learning


• However, Self-Play is potentially unstable due to 
feedback and deadly triad


• It is overcome in AlphaGo in different ways



Surprising Self-Play
• Find high quality examples to train RL on using RL. RL at 

three levels


• RL suffers from feedback, feedback creates instability


• What methods have been used to overcome feedback?



AlphaZero:

Three Levels of Self Play

1. Move-level self play (minimax, MCTS)


2. Example-level self play (learning, Actor Critic)


3. Game-level self play (curriculum, self transcending player)



1. Move-level self 
play



Minimax

• Assume you play best move, and opponent has your 
knowledge



Minimax

• Two-agent zero sum: my win is your loss


• Max/min/max/min/max/min


• Max: Square


• Min: Circle


• b=branching factor, d=search depth
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VWWVULU[� ^OV JOVVZLZ WVZP[PVUZ [OH[ ^PSS TPUPTPaL [OL V\[JVTL MVY \Z� 5L_[ P[
PZ V\Y TV]L HNHPU� HUK ^L JOVVZL [OL WVZP[PVU [OH[ TH_PTPaLZ V\Y ^PUUPUN WYVIH�
IPSP[ �̀ ;OPZ HS[LYUH[PUN VM TH_PTPaPUN HUK TPUPTPaPUN PZ [OL YLHZVU [OL WYVJLK\YL
PZ JHSSLK TPUPTH_��

0U -PN\YL ��� H ;PJ ;HJ ;VL [YLL PZ KYH^U ^P[O ]HS\LZ� -PN\YL ��� ZOV^Z H TVYL
HIZ[YHJ[ TPUPTH_ [YLL� ^OLYL UVKLZ HYL KYH^U HZ ZX\HYLZ HUK JPYJSLZ� 4H_PTPaPUN
UVKLZ �^OLYL P[ PZ V\Y [\YU� HYL KYH^U HZ ZX\HYLZ� TPUPTPaPUN UVKLZ �^OLYL P[ PZ
V\Y VWWVULU[»Z [\YU� HZ JPYJSLZ� )` MVSSV^PUN [OL ]HS\LZ ^L JHU ZLL OV^ [OL ]HS\LZ
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M\UJ[PVU [V SLHYU [V WSH` H NHTL MYVT ZJYH[JO�



State Space Complexity

• 10^47… 1 ns/position -> 10^38 s -> 10^30 earth-year 
10^21 times the age of the known universe/position



Heuristics

• Material (pawns, bishops, knights, …)


• Mobility (# actions)


• Center control


• King Safety


• …
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L_WHUKZ [OL 4(? UVKL»Z ÄYZ[ JOPSK a� 5VKL a PZ VM [`WL 405� HUK 405 UVKL a»Z
ÄYZ[ JOPSK� SLHM UVKL c PZ ]PZP[LK� 5VKL c PZ H SLHM UVKL ^P[O ]HS\L 3� *VTPUN V\[
VM [OL YLJ\YZPVU IHJR PU UVKL a HSWOH�IL[H \WKH[LZ ]HYPHISLZ g = min(+∞, 3)
HUK b = min(+∞, 3) [V 3� 0[ L_WHUKZ [OL ZLJVUK JOPSK VM 405 UVKL a� SLHM
UVKL d� ;OPZ UVKL d PZ L_WHUKLK ^P[O ^PUKV^ 〈−∞, 3〉� H [PNO[LY IL[H IV\UK� 0[Z
]HS\L PZ 6� JVTPUN IHJR PU a HSWOH�IL[H \WKH[LZ [OL ]HYPHISLZ g = min(3, 6) HUK
b = min(3, 6) [V 3� ÄUKZ UV V[OLY JOPSKYLU H[ a� HUK YL[\YUZ g = 3 [V r� )HJR H[ [OL
YVV[ r HSWOH�IL[H \WKH[LZ g = max(−∞, 3) HUK a = max(−∞, 3) [V 3� ;OLYL PZ
HUV[OLY JOPSK b� ^OPJO P[ L_WHUKZ ^P[O ^PUKV^ 〈3,+∞〉� P[ L_WHUKZ P[Z ÄYZ[ JOPSK
b ÄUKPUN SLHM UVKL e� ;OL ]HS\L VM 2 PZ YL[\YULK [V WHYLU[ b� ^OV \WKH[LZ [OL
]HYPHISLZ g = min(+∞, 2) HUK b = min(+∞, 2) [V 2� 5V^ [OL PM Z[H[LTLU[ PZ
[LZ[LK HUK 3 ≥ 2 PZ [Y\L� ZV [OL IYLHR Z[H[LTLU[ IYLHRZ V\[ VM [OL SVVW� YL[\YUPUN
[OL ]HS\L VM g = 2 [V WHYLU[ r� J\[[PUN VMM [OL L_WHUZPVU VM JOPSK f � ([ WHYLU[
r� [OL YVV[� [OL ]HYPHISLZ HYL \WKH[LK [V g = max(3, 2) HUK a = max(3, 2) [V 3�
(SWOH�IL[H PZ YLHK` HUK YL[\YUZ g = 3 [V [OL JHSSLY HZ [OL TPUPTH_ ]HS\L n ^P[OV\[
OH]PUN L_WHUKLK HSS UVKLZ VM [OL [YLL�

-VY \Z� [OL YLTHPUPUN JOPSK WVZP[PVUZ OH]L ILJVTL PYYLSL]HU[ HZ ZVVU HZ OHZ ILLU
WYV]LU [OH[ [OLPY 405 WHYLU[»Z ]HS\L ^PSS IL SV^LY [OHU [OL NVVK TV]L cα [OH[ ^L
OHK LUJV\U[LYLK LHYSPLY� ;OL Z\IZLX\LU[ JOPSKYLU VM [OL 405 UVKL HYL ZHPK [V IL
J\[ VMM I` [OL NVVK JOPSK cα = a VM [OL 4(? UVKL [OH[ ^L MV\UK LHYSPLY HUK [OL
Z[YVUN YLWS`�TV]L cβ = e [OH[ [OL VWWVULU[ MV\UK�

(M[LY 0 OH]L MV\UK H Z[YVUN TV]L cα = a� [OLU H Z[YVUN VWWVULU[»Z TV]L
cβ = e JHU J\[ VMM [OL ZLHYJO MVY M\Y[OLY VWWVULU[»Z TV]LZ� ;OL YLHZVU PZ [OH[
T` VWWVULU[»Z TV]L cβ = e PZ ZV Z[YVUN �IHK MVY [OL ÄYZ[ WSH`LY�� [OH[ ZLHYJOPUN
M\Y[OLY MVY V[OLY JOPSKYLU VM b [OH[ HYL L]LU ^VYZL MVY TL PZ \ZLSLZZ� ZPUJL 0 ^PSS UV
SVUNLY WSH` b� I\[ JOVVZL PUZ[LHK [V WSH` T` V^U Z[YVUN TV]L cα = a �VY WVZZPISL
V[OLY JOPSKYLU VM [OL YVV[� PM [OL` L_PZ[��

0U JVUZPKLYPUN T` V^U TV]L� HZ ZVVU HZ 0 OH]L PKLU[PÄLK H Z[YVUN LUV\NO
YLWS` I` T` VWWVULU[ [V VUL VM T` VW[PVUZ� 0 TV]L VU� J\[[PUN VMM [OL SVVR MVY
V[OLY YLWSPLZ [V [OH[ VW[PVU� 0M 0 OH]L UV[ `L[ MV\UK H Z[YVUN JV\U[LY YLWS` I` T`
VWWVULU[� 0 JVU[PU\L ZLHYJOPUN MVY VUL PU [OPZ VW[PVU� 0M [OLYL PZ UV Z[YVUN YLWS �̀

• A cutoff is an action (e) that is so strong for my opponent that I will 
not play b (because a is better )  and hence we can stop searching b



After Chess?



Go!



Go

• Worldwide most popular combinatorial game of strategy


• Much more complex than Chess



Heuristic Planning
• Successful in games with tactical play where efficient 

heuristics can be found


• Pieces move, and material is a good indicator of the 
score


• In Go, board is large, pieces do not move, material is 
typically balanced, and “influence” turned out to be 
difficult to program efficiently



Traditional Go program 
• Minimax


• Forward Pruning: only try “sensible” actions:  
connect, defend, territory jump 
Like a knowledge-based expert system


• Influence calculation for scoring


• Weak amateur level (10 kyu)


• Years of no real progress


• Then: MCTS



MCTS



Adaptive Sampling

• No Efficient Heuristics 
for influence


• Rigid Search does not 
work well in large, flat 
state space



Monte Carlo playouts



Monte Carlo Playouts
• Chess: b=10. Full width


• Go: b=200. Forward pruning


• Playout: Not search Tree b^d but search Path d
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Monte Carlo vs Minimax
• Minimax: Best of all actions 


• Monte Carlo: Average of random playouts
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Monte Carlo Tree Search

• Brügmann 1993 tried all playouts from the root (flat) 
Results were better than random, but not great -> MC 

• Coulom 2006 (after work of others) tried it recursively, in 
a tree. This did give good results -> MCTS


• Kocsis & Szepesvari 2006 suggested the UCT selection 
rule to balance exploration and exploitation. 
(Based on extensive work in multi-armed bandit theory)



Four Operations



UCT Selection formula

• UCTj = winratej + Cp * newnessj


• Select the child j with the highest UCT value


• Winrate is for exploitation of what is known to be good


• Newness is for exploration of lesser-searched subtrees


• Larger Cp means more exploration


• Upper Confidence bounds applied to Trees
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( JOPSK ^P[O H OPNO ^PUYH[L YLJLP]LZ [OYV\NO [OPZ [LYT HU L_WSVP[H[PVU IVU\Z� ;OL
ZLJVUK [LYT PZ MVY L_WSVYH[PVU� ( JOPSK [OH[ OHZ ILLU ]PZP[LK PUMYLX\LU[S` OHZ HU
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( SV^ Cp KVLZ SP[[SL L_WSVYH[PVU� H OPNO Cp OHZ TVYL L_WSVYH[PVU� :LJ[PVU �����
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Example



Example

• 1


• Select r


• expand a, playout a -> d=+, update 
a&r win++, visit++


• 2


• Select r


• expand b, playout b -> e=-, update 
b&r, visit++

���� 465;, *(936 ;9,, :,(9*/ ���

T\S[PWSL WVSPJPLZ� +\YPUN [OL 4*;: SVVR HOLHK ZPT\SH[PVU H ZLJVUK WVSPJ` ^HZ
\ZLK� ;OL HJ[PVUZ ZLSLJ[LK I` [OL ZLSLJ[PVU Y\SL PU [OL [YLL MVYTLK H ZLSLJ[PVU
WVSPJ �̀ (KKP[PVUHSS �̀ [OL HJ[PVUZ PU [OL WSH`V\[ WOHZL HYL H WVSPJ �̀ ;OPZ [OPYK [`WL
VM WVSPJ` PZ ZVTL[PTLZ JHSSLK [OL KLMH\S[ WVSPJ`�

����� ,_HTWSL

3L[ \Z PSS\Z[YH[L [OL ^VYRPUN VM 4*;: ^P[O HU L_HTWSL� -PN\YL ��� NP]LZ HU L_HT�
WSL VM H ML^ 4*;: P[LYH[PVUZ� 0U [OL L_HTWSL ^L ZLL OV^4*;: [YH]LYZLZ [OL Z[H[L
ZWHJL PU P[LYH[PVUZ� OV^ [OL <*; MVYT\SH HKHW[Z IL[^LLU L_WSVP[PUN OPNO ^PU ]HS�
\LZ HUK L_WSVYPUN \UZLLU WHY[Z VM [OL [YLL� HUK OV^ [OL Z[H[PZ[PJZ HYL H]LYHNLK PU
[OL IHJRWYVWHNH[PVU WOHZL�

w:1,1,2
v:1,2,3r

w:1,2,3
v:1,2,3a

�c �d

w:0
v:1b

�e f

-PN\YL ���! 4*;: Z[HY[Z H[ [OL YVV[� KVLZ UV[ ZLSLJ[ H TV]L ILJH\ZL [OLYL HYL UV
JOPSKYLU PU [OL [YLL� I\[ L_WHUKZ H YHUKVT JOPSK� 3L[»Z ZH` a PZ L_WHUKLK� ;OLU
H YHUKVT WSH`V\[ PZ WLYMVYTLK H[ UVKL a� 3L[»Z ZH` UVKL d PZ [OL ÄYZ[ UVKL PU
[OL WSH`V\[� :PUJL [OPZ PZ H [PU` Z[H[L ZWHJL� [OL YHUKVT WH[O [OH[ PZ WSH`LK V\[
JVUZPZ[Z VUS` VM UVKL d HUK PZ H [LYTPUHS UVKL� ;OL ]HS\L H[ UVKL d PZ H ^PU� ZV
IHJRWYVWHNH[PVU PUJYLTLU[Z HSS ^PU ]HS\LZ VM [OL WH[O [V [OL YVV[ I` � �UVKLZ a, r�
HUK HSZV [OL ]PZP[ JV\U[Z� ;OL ZLJVUK P[LYH[PVU Z[HY[Z H[ YVV[ r� ^OLYL [OLYL HYL
\UL_WHUKLK JOPSKYLU ZV P[ L_WHUKZ H UVKL� ^OPJO PZ UVKL b� ([ b H WSH`V\[ PZ
WLYMVYTLK� ^OPJO LUKZ \W H[� ZH �̀ e� ^OVZL ]HS\L PZ H SVZZ� ;OPZ NL[Z WYVWHNH[LK
�UV ^PU ]HS\LZ JOHUNL� HUK [OL ]PZP[ JV\U[Z VM b, r HYL PUJYLTLU[LK� 5L_[� [OL
[OPYK P[LYH[PVU Z[HY[Z� ([ [OL YVV[ HSS JOPSKYLU HYL L_WHUKLK� ZV ^L ZLSLJ[ H JOPSK�
>L ZLSLJ[ a ZPUJL P[Z <*; ]HS\L PZ 1/1 + 1×

√
ln 1/1 = 2� HUK b»Z ]HS\L PZ 0/1 +

1×
√

ln 1/1 = 0� ( WSH`V\[ PZ WLYMVYTLK H[ a� SL[»Z ZH` P[ [YH]LYZLZ UVKL c� ^OPJO
PZ HSZV H ^PU� ;OL ]HS\LZ HYL \WKH[LK �a»Z ^PU HUK ]PZP[ JV\U[ HYL PUJYLTLU[LK [V
� HUK �� r»Z [V � HUK ��� 5L_[� [OL MV\Y[O P[LYH[PVU ZLSLJ[Z UVKL a ZPUJL [OL <*;
]HS\L VM a PZ 2/2 + 1×

√
ln 2/2 = 1.588 HUK b PZ 0/1 + 1×

√
ln 2/1 = 0.832� 0[

ÄUKZ [OH[ a OHZ UV JOPSKYLU� ZV P[ L_WHUKZ H JOPSK� ZH` UVKL c� 0[ [OLU WLYMVYTZ H
WSH`V\[ HUK ÄUKZ H ^PU� HUK \WKH[LZ [OL ^PU HUZ ]PZP[ ]HS\LZ VM c, a, r HJJVYKPUNS �̀
0[ JVU[PU\LZ ^P[O TVYL P[LYH[PVUZ \U[PS [PTL PZ \W�

• 3


• select UCT(a) 1/1+1*sqrt(ln 1/1) = 1, 
UCT(b) 0/1+1*sqrt(ln 1/1)=0


• Playout a -> c=+, update a&r, win++,  
visit++


• 4


• Select r


• select UCT(a) 2/2+1*sqrt(ln 2/2) = 1.588, 
UCT(b) 0/1+1*sqrt(ln 2/1)=0.832


• expand c, playout c=+, update c&a&r, 
win++, visit++



Tree Shape



Impact MCTS playing 
strength Go programs



MCTS Go



Questions?



2. Example-level self 
play



AlphaGo 1 2 3

1. AlphaGo: The Champion


2. AlphaGo Zero: Tabula Rasa 
The Self-Learner


3. AlphaZero: Three games: Chess, Shogi, Go.  
The Generalist



AlphaGo Structure
• 4 nets


• fast rollout policy


• slow sl policy


• slow rl policy


• value net


• 3 learning methods


• supervised small patterns fast rollout policy


• supervised database grandmaster games


• reinforcement from database de-correlated self-play games



Policy & Value & Playout



AlphaGo Structure



AlphaGo Performance



AlphaGo Matches

• 2015 Fan Hui London


• 2016 Lee Sedol Seoul


• 2017 Ke Jie Wuzhen





AlphaGo Zero

• Faster 
days, not weeks


• Better 
Higher Elo


• Elegant 
1 network



Self-Play Loop
���� .,5,9(30A05. 05;,330.,5*, 05 .(4,: ���

TJ[Z L]HS

[YHPU
[V\YUHTLU[Z! (s, π, z) L_HTWSLZ

VSK UL[ θ
UL^ UL[ θ′

a

Z

NHTLZ! ZLSM WSH`

-PN\YL ���! *VUJLW[\HS :LSM�7SH` 3VVW

[V ZLHYJO [OLT� Z\JO HZ HSWOH�IL[H� /`WLYWHYHTL[LY WYVISLTZ HYL [`WPJHSS` HSZV
VM H ZPaL ^OLYL [OL U\TILY VM JVTIPUH[PVUZ [LUKZ [V IL THUHNHISL� HUK L_HJ[
TL[OVKZ ^VYR� /PNO KPTLUZPVUHS Z[H[LZ NP]L SHYNL Z[H[L ZWHJLZ HUK HYL OHYKLY� ^L
ULLK HWWYV_PTH[PVU� /L\YPZ[PJZ HYL H ^H` [V HWWYV_PTH[L Z[H[LZ HUK YLK\JL [OL
ZPaL VM [OL Z[H[L ZWHJL� ZV [OH[ ^L JHU \ZL WSHUUPUN HNHPU� -VY OPNO KPTLUZPVUHS
Z[H[LZ HUV[OLY HWWYV_PTH[PVU TL[OVK PZ NLULYHSPaH[PVU� HSZV RUV^U HZ MLH[\YL VY
YLWYLZLU[H[PVU SLHYUPUN�

5V[L [OH[ [OL U\TILY Q\Z[ TLU[PVULK� H TPSSPVU� PZ KLWLUKLU[ VU [OL ZWLLK VM
JVTW\[LYZ� 0U :HT\LS»Z KH`Z PU � ���� �� [OL U\TILY ^HZ Z\YLS` H [OV\ZHUK �VY
L]LU SLZZ� ILJH\ZL JVTW\[LYZ ^LYL ZV T\JO ZSV^LY�

*VYYLSH[PVU

;V SLHYU� UL^ PUMVYTH[PVU PZ ULLKLK� VY SP[[SL ^PSS IL SLHYULK� ;OLYL OHZ [V IL
KP]LYZP[` PU [OL Z[H[LZ� *VYYLSH[PVU IL[^LLU Z[H[LZ PZ [V IL H]VPKLK ZPUJL [^V JVY�
YLSH[LK Z[H[LZ OH]L SLZZ UL^ PUMVYTH[PVU [V SLHYU MYVT [OHU \UJVYYLSH[LK Z[H[LZ
�HUK JVYYLSH[LK Z[H[LZ HYL T`VWPJ� [OL` JV]LY H ZTHSSLY WHY[ VM [OL Z[H[L ZWHJL�
HUK [OL` JHU SLHK [V J`JSLZ��

6W[PTPaH[PVU

;OL NVHS VM VW[PTPaH[PVU PZ [V ÄUK [OL ILZ[ P[LT PU H ZL[� +LWLUKPUN VU [OL WYVI�
SLT MVYT\SH[PVU� [OL VW[PT\T JHU LP[OLY IL [OL TPUPT\T VY [OL TH_PT\T� 0U
NHTLZ VW[PTPaH[PVU TLHUZ ÄUKPUN [OL ILZ[ TV]L� PU UL\YHS UL[^VYRZ [OL VW[P�
T\T PZ [OL SV^LZ[ LYYVY ]HS\L VM [OL UL[^VYR� PU ZLSM�WSH` P[ PZ [OL ILZ[ WSH`LY ^L
\ZL� ;OL [LYT VW[PTPaH[PVU PZ \ZLK PU [OPZ IVVR MVY HSS [OLZL W\YWVZLZ� PUJS\KPUN
HWWYV_PTH[PVU� >OLU [OL Z[H[L ZWHJL PZ SHYNL� ÄUKPUN [OL \S[PTH[L VW[PT\T PZ
PUMLHZPISL� HUK ^L YLZVY[ [V HWWYV_PTH[PVU TL[OVKZ�

;V Z\TTHYPaL� L_HJ[ HSNVYP[OTZ JHU IL \ZLK MVY WSHUUPUN� HWWYV_PTH[PVU HS�
NVYP[OTZ ULLK [YHPUPUN� HUK ZLSM�WSH` \ZLZ [OL WSHU�[YHPU SVVW [OH[ ^L YLJHSS MYVT
*OHW[LY �� HUK [OH[ ^L ZOV^ HNHPU PU -PN\YL ���� ,_[YH VW[PTPaH[PVU KPTLUZPVUZ
JHU IL HKKLK� Z\JO HZ VW[PTPaH[PVU SVVWZ MVY O`WLYWHYHTL[LYZ VY UL[^VYR HYJOP�
[LJ[\YL�

3L[ \Z UV^ [Y` [V L_[LUK [OL ZLHYJO�L]HS HYJOP[LJ[\YL ^P[O [OLZL PKLHZ�

• Generate a sequence of own training examples



AlphaGo Zero Overview

• Zero-knowledge


• One net (double-headed)


• One learning method: Self-Play


• Tabula Rasa: Only the rules & input/output layers, zero 
heuristics, zero grandmaster games


• Curriculum learning



AlphaGo Zero Performance



AlphaGo Zero Performance



AlphaGo Zero Performance



AlphaGo Zero Structure

• 1 net: ResNet with policy head and value head 
Combined loss-function


• 1 learning: RL Self-Play


• Tabula Rasa



AlphaGo Zero Structure



AlphaGo Zero Networks



AlphaGo Zero

• One net


• No Random Playout


• No Games database



Two Questions

• Why Faster than AlphaGo?


• How can Self-Play (RL using RL for examples)  ever be 
Stable? Deadly Triad Squared!



AlphaGo Zero
• Stable


• Extra Exploration


• De-correlation


• How?


• MCTS & Noise & Exploration & Replay Buffer & Many 
games


• AlphaGo Zero’s nets are not optimized against themselves, 
but against MCTS-improved versions of themselves



AlphaGo Zero

• How Faster?


• Curriculum learning



3. Game-level self 
play



Curriculum Learning
• AlphaGo Zero learns better than AlphaGo


• AlphaGo Zero learns faster than AlphaGo. Why?


• Curriculum learning: start with easy examples


• Many small steps are faster than one large step



Learning to Play



Learning to Play



Learning to Play



Curriculum



AlphaZero

General





AlphaZero Overview
• Same net, same search, same tabula rasa self-play


• Different Input/Output layers


• Go, Chess, Shogi



AlphaZero Structure



AlphaZero Performance



AlphaZero Performance



AlphaZero Conclusions
• First time learning, neural nets, and MCTS work in Chess


• Decades of heuristic planning research are surpassed


• Three Games share a general essence, since same 
architecture works (except I/O)


• Not same net. Net trained for Chess does not work for 
Shogi


• First architecture achieving very high performance in three 
games



Curriculum and other 
learning



Curriculum Learning & 
Friends

• Learning is Generalization from example to example


• Curriculum learning easy to hard concepts


• Multi-task learning two tasks at the same time


• Transfer learning from problem to problem



Game State



AlphaGo Cheat Sheet



AlphaGo Performance



Open Source AlphaZero 
Reimplementations

• Leela


• ELF Facebook


• AlphaZero General Stanford


• PhoenixGo Tencent


• PolyGames Facebook


