
Master

Reinforcement Learning 2022

Lecture 5:

Model Based Methods

Aske Plaat

Different Approaches
• Model-free

• Value-based [2,3]

• Policy-based [4]

• Model-based

• Learned [5]

• Perfect; Two-Agent [6]

• Multi-agent [7]

• Hierarchical Reinforcement Learning (Sub-goals) [8]

• Meta Learning [9]

Motivation

Warning

• Model-free (value-based & policy-based) is mature RL
(things work)

• Everything from now on starts to be more advanced, and
less mature (research; not all things work; wild ride)

• More exciting, but less secure 
More questions, fewer answers

Overview
• Model Free is great,

but sample complexity

• Model Free: Learn
Policy (s,a)

• Model Based: Learn
Transitions (s,s) [and
use that to learn policy
(s,a)]

• Classic: Dyna

• Model Learning:

• Uncertainty,
Ensembles

• Latent Models

• Planning the Model:

• Short Rollouts,
replanning (MPC)

• End-to-end Planning

• PlaNet, Dreamer

• MuZero

Sample Complexity

• model free: PPO runs

If simple MuJoCo
environments take millions
of time steps, how can we

learn more complicated
environments?

Model-free Model-based

• Learn Policy Direct or Learn Transition first and then
policy?

Meaning of Learning
Transition

• s a s’ a’ s’’ a’’ s’’’ a’’’ s’’’’

• s a 
policy: understanding how to react in an environment

• s a s’ 
transition: understanding an environment

→ → → → → → → →

→

→ →

Learning

• Agent changing state in the environment

• Irreversible state change

• Forward Path

• s a s’ a’ s’’ a’’ s’’’ a’’’ s’’’’→ → → → → → → →

Planning

• Agent changing own local state

• Reversible local state change

• Backtracking Tree

•

Model-based

Example Model-free
• Initialize Q-function

• For All Episodes:

• Initialize s

• For All Time Steps in this Episode:

• Select a -greedy from Q(s)

• Perform a in Environment giving s’ and r

• Q(s,a) Q(s,a)+ [r+ maxaQ(s’,a)-Q(s,a)]

• s s’

• return Q

ϵ

← α γ

←

Example Model-based
• Initialize Q-function

• Repeat

• Initialize s; a (s); (s’,r) Env(s,a) :: Learn

• Q(s,a) Q(s,a)+ [r+ maxaQ(s’,a)-Q(s,a)]

• M(s,a) (s’,r) :: Model

• For n=1, …, N :

• Select and randomly

• (s’,r) M(,) :: Plan for FREE!

• Q(,) Q(,)+ [r+ maxaQ(s’,a)-Q(,)]

• Until Q converges

• return Q

←π ←

← α γ

←

̂s ̂a

← ̂s ̂a

̂s ̂a ← ̂s ̂a α γ ̂s ̂a

Dyna [Sutton]
• Initialize Q-function

• Repeat

• Initialize s; a (s); (s’,r) Env(s,a) :: Learn

• Q(s,a) Q(s,a)+ [r+ maxaQ(s’,a)-Q(s,a)]

• M(s,a) (s’,r) :: Model

• For n=1, …, N :

• Select and randomly

• (s’,r) M(,) :: Plan for FREE!

• Q(,) Q(,)+ [r+ maxaQ(s’,a)-Q(,)]

• Until Q converges

• return Q

←π ←

← α γ

←

̂s ̂a

← ̂s ̂a

̂s ̂a ← ̂s ̂a α γ ̂s ̂a

Dyna: Learning & Planning

• Learning

• Planning

Sample Complexity

• Model based reduces sample complexity

• As soon as Model has enough transition entries, the
policy can be learned from the Model, for free

• This free learning is called planning. It does not involve
environment samples, hence, “free”

Why “Planning”?
• Internal to Agent

• Agent has state

• Agent can undo; allows to retrace your steps

• Agent can backtrack to try another action

• Planning is reversible learning

• Learning changes Environment state that the Agent
cannot undo

Imperfect Models

However

• Free planning concept only works if Model is perfect

• When Environment is high dimensional, it will never be
fully sampled, so Model will be imperfect

Trade-off

• Learning T to reduce Env samples

• T is a function, a neural network

• With high dim problems, T is high capacity, so needs
many samples to prevent overfitting

• Trade-off sample complexity vs quality of model

Dealing with Imperfect
Models

• Improving Model Learning

• Improving Planning with Imperfect Model

Improving Model Learning

• Modeling Uncertainty

• Latent Models

Modeling Uncertainty
• Gaussian Processes

• PILCO, GPS, SVG

• Works, but Computationally 
expensive

• Ensembles

• PETS

• Knowing uncertainty allows better planning

• Do Planning sampling from distribution, plan with locally-linear search or
with stochastic trajectory optimizer

• Does not scale to high dimensional problems

Latent Model
• Compress Observation Space into (smaller) Latent Space

by modeling on value prediction

• Plan in small Latent Space [Dreamer]

Latent Model
• Compression: autoencoder

• Many networks, Complicated architecture, Good
performance

• PlaNet, Dreamer, VPN

How to Plan with a weak
Model

• Trajectory Rollouts and Model-Predictive Control

• End-to-end learning and planning

Trajectory MPC
• Short trajectory rollouts

• reduce lookahead depth

• splits rollouts in near future (planned) and far-future (model-
free) -> MVE

• Model-predictive Control 
Decision-time planning

• Highly non-linear function are often locally linear

• MPC: optimize model over limited time, and re-learn -> PETS

End-to-end learning/
planning

• Trend for programming by
example

• Can a neural network do
planning? (with backtrack?)

• Learn differentiable planning

Value Iteration

End-to-end learning/
planning

• Value Iteration Network

• Each layer one step of Value Iteration

• Learn

• Learn different Mazes
Our main observation is that each iteration of VI may be seen as passing the previous
value function Vn and reward function R through a convolution layer and max-pooling

layer. In this analogy, each channel in the convolution layer corresponds to the Q-
function for a specific action, and convolution kernel weights correspond to the

discounted transition probabilities.

• Later: RNN/LSTM for state:
VProp

• Latent & End-to-end:
TreeQN, Predictron, MuZero,
I2A, World Model

• Elaborate, Complex systems

End-to-end learning/
planning

Diagram
LEARNING

Uncertainty
Ensembles

CNN
Latent Models

PLANNING

Trajectory
Model-predictive

control

PILCO GPS SVG Local

PETS MVE Meta

Dreamer
Plan2Explore

L3P VPN SimPLe

Dreamer-v2

End-to-end
VIN

VProp

Network-Planning

TreeQN I2A

Predictron

World Model

MuZero

An Overview of Model-
Based Approaches

PILCO uncertainty/
trajectory

• Gaussian Processes

• Computationally
Expensive

PETS ensemble/mpc

Value Prediction Network
latent/traj

Latent PlaNet

PlaNet latent/mpc

Dreamer latent/traj

Dreamer latent/traj

I2A latent/e2e

I2A latent/e2e

MuZero latent/e2e

MuZero latent/e2e

MuZero latent/e2e

MuZero latent/e2e

Benchmark

• SAC and TD3 are model-free baselines

• Model-based is sometimes better

Conclusion
• What does the overview tell us?

• Accuracy of transition model: crucial

• Sample complexity trade-off: success

• Results sometimes better than model-free

• Still brittleness, sensitive to hyperparameters

• Still active field of research

Questions?

