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Different Approaches
• Model-free


• Value-based [2,3]


• Policy-based [4]


• Model-based 


• Learned [5]


• Perfect; Two-Agent [6]


• Multi-agent [7]


• Hierarchical Reinforcement Learning (Sub-goals) [8]


• Meta Learning [9]



Motivation



Warning

• Model-free (value-based & policy-based) is mature RL 
(things work)


• Everything from now on starts to be more advanced, and 
less mature (research; not all things work; wild ride)


• More exciting, but less secure 
More questions, fewer answers



Overview
• Model Free is great, 

but sample complexity


• Model Free: Learn 
Policy (s,a)


• Model Based: Learn 
Transitions (s,s) [and 
use that to learn policy 
(s,a)]


• Classic: Dyna

• Model Learning:


• Uncertainty, 
Ensembles


• Latent Models


• Planning the Model:


• Short Rollouts, 
replanning (MPC)


• End-to-end Planning


• PlaNet, Dreamer


• MuZero



Sample Complexity

• model free: PPO runs



If simple MuJoCo 
environments take millions 
of time steps, how can we 

learn more complicated 
environments?



Model-free Model-based

• Learn Policy Direct or Learn Transition first and then 
policy?



Meaning of Learning 
Transition

• s  a  s’  a’  s’’  a’’  s’’’  a’’’  s’’’’


• s  a 
policy: understanding how to react in an environment


• s  a  s’ 
transition: understanding an environment

→ → → → → → → →

→

→ →



Learning

• Agent changing state in the environment


• Irreversible state change


• Forward Path


• s  a  s’  a’  s’’  a’’  s’’’  a’’’  s’’’’→ → → → → → → →



Planning

• Agent changing own local state


• Reversible local state change


• Backtracking Tree


•



Model-based



Example Model-free
• Initialize Q-function


• For All Episodes:


• Initialize s


• For All Time Steps in this Episode:


• Select a -greedy from Q(s)                            

• Perform a in Environment giving s’ and r


• Q(s,a)  Q(s,a)+ [r+ maxaQ(s’,a)-Q(s,a)]        

• s  s’


• return Q

ϵ

← α γ

←



Example Model-based
• Initialize Q-function


• Repeat


• Initialize s; a (s); (s’,r) Env(s,a)   :: Learn


• Q(s,a)  Q(s,a)+ [r+ maxaQ(s’,a)-Q(s,a)]        

• M(s,a)  (s’,r)    :: Model


• For n=1, …, N :


• Select  and  randomly                           

• (s’,r)  M( , )     :: Plan for FREE!


• Q( , )  Q( , )+ [r+ maxaQ(s’,a)-Q( , )]       


• Until Q converges


• return Q

←π ←

← α γ

←

̂s ̂a

← ̂s ̂a

̂s ̂a ← ̂s ̂a α γ ̂s ̂a



Dyna [Sutton]
• Initialize Q-function


• Repeat


• Initialize s; a (s); (s’,r) Env(s,a)   :: Learn


• Q(s,a)  Q(s,a)+ [r+ maxaQ(s’,a)-Q(s,a)]        

• M(s,a)  (s’,r)    :: Model


• For n=1, …, N :


• Select  and  randomly                           

• (s’,r)  M( , )     :: Plan for FREE!


• Q( , )  Q( , )+ [r+ maxaQ(s’,a)-Q( , )]       


• Until Q converges


• return Q

←π ←

← α γ

←

̂s ̂a

← ̂s ̂a

̂s ̂a ← ̂s ̂a α γ ̂s ̂a



Dyna: Learning & Planning

• Learning


• Planning



Sample Complexity

• Model based reduces sample complexity


• As soon as Model has enough transition entries, the 
policy can be learned from the Model, for free


• This free learning is called planning. It does not involve 
environment samples, hence, “free”



Why “Planning”?
• Internal to Agent


• Agent has state


• Agent can undo; allows to retrace your steps


• Agent can backtrack to try another action


• Planning is reversible learning


• Learning changes Environment state that the Agent 
cannot undo



Imperfect Models



However

• Free planning concept only works if Model is perfect


• When Environment is high dimensional, it will never be 
fully sampled, so Model will be imperfect



Trade-off

• Learning T to reduce Env samples


• T is a function, a neural network


• With high dim problems, T is high capacity, so needs 
many samples to prevent overfitting


• Trade-off sample complexity vs quality of model



Dealing with Imperfect 
Models

• Improving Model Learning


• Improving Planning with Imperfect Model



Improving Model Learning

• Modeling Uncertainty


• Latent Models



Modeling Uncertainty
• Gaussian Processes


• PILCO, GPS, SVG


• Works, but Computationally 
expensive


• Ensembles


• PETS


• Knowing uncertainty allows better planning


• Do Planning sampling from distribution, plan with locally-linear search or 
with stochastic trajectory optimizer


• Does not scale to high dimensional problems



Latent Model
• Compress Observation Space into (smaller) Latent Space 

by modeling on value prediction


• Plan in small Latent Space [Dreamer]



Latent Model
• Compression: autoencoder


• Many networks, Complicated architecture, Good 
performance


• PlaNet, Dreamer, VPN



How to Plan with a weak 
Model

• Trajectory Rollouts and Model-Predictive Control


• End-to-end learning and planning



Trajectory MPC
• Short trajectory rollouts


• reduce lookahead depth


• splits rollouts in near future (planned) and far-future (model-
free) -> MVE


• Model-predictive Control 
Decision-time planning


• Highly non-linear function are often locally linear


• MPC: optimize model over limited time, and re-learn -> PETS



End-to-end learning/
planning

• Trend for programming by 
example


• Can a neural network do 
planning? (with backtrack?)


• Learn differentiable planning



Value Iteration



End-to-end learning/
planning

• Value Iteration Network


• Each layer one step of Value Iteration


• Learn 


• Learn different Mazes
Our main observation is that each iteration of VI may be seen as passing the previous 
value function Vn and reward function R through a convolution layer and max-pooling 

layer. In this analogy, each channel in the convolution layer corresponds to the Q-
function for a specific action, and convolution kernel weights correspond to the 

discounted transition probabilities.



• Later: RNN/LSTM for state: 
VProp


• Latent & End-to-end: 
TreeQN, Predictron, MuZero, 
I2A, World Model


• Elaborate, Complex systems

End-to-end learning/
planning
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An Overview of Model-
Based Approaches



PILCO uncertainty/
trajectory

• Gaussian Processes


• Computationally 
Expensive



PETS ensemble/mpc



Value Prediction Network 
latent/traj



Latent PlaNet



PlaNet latent/mpc



Dreamer latent/traj



Dreamer latent/traj



I2A latent/e2e



I2A latent/e2e



MuZero latent/e2e



MuZero latent/e2e



MuZero latent/e2e



MuZero latent/e2e



Benchmark

• SAC and TD3 are model-free baselines


• Model-based is sometimes better



Conclusion
• What does the overview tell us?


• Accuracy of transition model: crucial


• Sample complexity trade-off: success


• Results sometimes better than model-free


• Still brittleness, sensitive to hyperparameters


• Still active field of research



Questions?


