Master
Reinforcement Learning 2022

Lecture 5:
Model Based Methods

Aske Plaat

Different Approaches

Model-free
e \alue-based [2,3]
e Policy-based [4]

Model-based

e Learnd
e Perfect; 'I;;Qb—Agent [6]

Multi-agent [7]

Hierarchical Reinforcement Learning (Sub-goals) [8]

Meta Learning [9]

505 Episodes

Warning

B\

g e W
- R
* Model-free (value-based & policy-based) is mature RL
(things work)

e Everything from now on starts to be more advanced, and
less mature (research; not all things work; wild ride)

* More exciting, but less secure
More questions, fewer answers

Overview

Model Free is great,
but sample complexity

Model Free: Learn
Policy (s,a)

Model Based: Learn
Transitions (s,s) [and
use that to learn policy

(s,a)]

Classic: Dyna

e Model Learning: ¢ PlaNet, Dreamer

e Uncertainty, e MuZero
Ensembles

e Latent Models
* Planning the Model:

e Short Rollouts,
replanning (MPC)

 End-to-end Planning

Sample Complexity

e = 0.2. We see that PPO outperforms the previous methods on almost all the continuous control
environments.

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1
1000 —
2000 2500 8000 W WY
A
AN 800
1500 /\{\
2000 M/ / 6000 \
1000 1500 600
500 4000
400 |
1000 J/vx
0 ’:M 2000 “
500 W 200 |
-500 }/
0 s 0 0
0 1000000 0 1000000 0 1000000 0 1000000
Reacher-v1 Swimmer-v1 Walker2d-v1
— A2C
120 .
-20 —— A2C + Trust Region
P 100 3000 —— CEM
40 80 —— PPO (Clip)
_80 60 2000 Vanilla PG, Adaptive
TRPO
-80 40
W
20 /c“/\/\/\/—\/“'\’""‘——\ 1000
4 ~
-100 PO T
0 /\/"\M/JWM'\/\’\ S
o
-120 0
0 1000000 0 1000000 0 1000000

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million
timesteps.

If simple MudoCo
environments take millions
of time steps, how can we

learn more complicated
environments?

Model-free Model-based

value/policy
acting
planning direct
RL
model experlence

model
learning

e Learn Policy Direct or Learn Transition first and then
policy?

Meaning of Learning
Transition

° S) a > S! _) a’ _) S” _) a” _) S!” % a”! _) S

e S— a
policy: understanding how to react in an environment

e s—>a—¢s
transition: understanding an environment

Learning

Agent changing state in the environment

Irreversible state change

Forward Path

S

> d

> S! é a! % S” % a” % S

é a!” % S

Planning

Agent changing own local state
Reversible local state change

Backtracking Tree

Model-based

r{Pohcy/V alue]—w
planning acting

Dynamlcs Model} LEnv1ronment

earnmg

repeat
Sample environment E to generate data D = (s, a,r’, s’)
Use Dtolearn M =T,(s,s’), Ra(s,s’)
forn=1,...,N do
Use M to update policy 7 (s, a)
end for
until 7 converges

> learning

> planning

e |nitialize Q-function

* For All Episodes:

e return Q

Example Model-free

¢ |nitialize s

* For All Time Steps in this Episode:

e Select a e-greedy from Q(s)

* Perform a in Environment giving s’ and r

e Q(s,a) « Q(s,a)+a[r+ymaxaQ(s’,a)-Q(s,a)]

e S« ¢

Example Model-based

¢ |nitialize Q-function

e Repeat
e |nitialize s; a<—n(s); (s’,r)<—Env(s,a) :: Learn
e Q(s,a) < Q(s,a)+a[r+ymaxaQ(s’,a)-Q(s,a)]
e M(s,a) « (s’,r) :: Model
e Forn=1,...,N:
» Select § and d randomly
e (s',) « M(§,a) : Plan for FREE!
o Q(5,a) « Q(S,4)+ar+ymaxaQ(s’,a)-Q(S,4a)]
e Until Q converges

e return Q

U

—E = E— K=

U

U =

U i =

NN U] <

U =5 =5 Ul

Ul

NEIRARSIRS N

S << Uiy
= | [e=] = cz.

Dyna [Sutton]

* Initialize Q-function
* Repeat
e |nitialize s; a<«x(s); (s’,r)«<—Env(s,a) :: Learn
e Q(s,a) « Q(s,a)+a[r+ymaxaQ(s’,a)-Q(s,a)]
e M(s,a) « (s’,r) ::Model
e Forn=1, ..., N:
e Select § and d randomly

e (s’,r) « M(5,a) ::Plan for FREE!
e Q(5,4) « Q(S,a)+afr+ymaxaQ(s’,a)-Q(S,d)]

e Until Q converges

e return Q

Dyna: Learning & Planning

Policy/Value
learning acting
Environment
Policy/Value
planning acting
e Learning

* Planning Dynamlcs Model]d l LEnv1ronment
earning
Policy/Value
planning acting
r’ learning
Dynamlcs Model} LEnv1ronment
learning

Sample Complexity

* Model based reduces sample complexity

* As soon as Model has enough transition entries, the
policy can be learned from the Model, for free

* This free learning is called planning. It does not involve
environment samples, hence, “free”

Why “Planning”?

Internal to Agent

Agent has state

Agent can undo; allows to retrace your steps
Agent can backtrack to try another action
Planning is reversible learning

Learning changes Environment state that the Agent
cannot undo

Imperfect Models

However

* Free planning concept only works if Model is perfect

 When Environment is high dimensional, it will never be
fully sampled, so Model will be imperfect

Trade-off

Learning T to reduce Env samples
T Is a function, a neural network

With high dim problems, T is high capacity, so needs
many samples to prevent overfitting

Trade-off sample complexity vs quality of model

Dealing with Imperfect
Models

* |Improving Model Learning

* Improving Planning with Imperfect Model

Improving Model Learning

* Modeling Uncertainty

e |atent Models

Modeling Uncertainty

Gaussian Processes 2.0r
e PILCO, GPS, SVG

e Works, but Computationally
expensive

Ensembles ,
=-=== target function prediction
+ training data 20 credible region
[] 1 1 L 1 1 1 1 1 L]
PETS R R > 1 6 3 10
0

Knowing uncertainty allows better planning

Do Planning sampling from distribution, plan with locally-linear search or
with stochastic trajectory optimizer

Does not scale to high dimensional problems

Latent Model

e Compress Observation Space into (smaller) Latent Space
by modeling on value prediction

e Plan in small Latent Space [Dreamer]

d
o

a, 9 a, v a, ¥ a, ;]

I b i] i
— — — a5 a5
AT AT A i~

Learn dynamics from dataset Learn behavior in imagination Environment interaction

Latent Model

e Compression: autoencoder

e Many networks, Complicated architecture, Good
performance

e PlaNet, Dreamer, VPN

Encoder —»i—o Decoder

Denoised image

Noisiy input

The feature we want to
extract from the image

How to Plan with a weak
Model

* Trajectory Rollouts and Model-Predictive Control

 End-to-end learning and planning

Trajectory MPC

e Short trajectory rollouts
* reduce lookahead depth

» splits rollouts in near future (planned) and far-future (model-
free) -> MVE

e Model-predictive Control
Decision-time planning

e Highly non-linear function are often locally linear

e MPC: optimize model over limited time, and re-learn -> PETS

End-to-end learning/
planning

e Trend for programming by
example

e Can a neural network do
planning? (with backtrack?)

* Learn differentiable planning

Traditional Programming

Data
Output
Program

Machine Learning

Data
Program

Value lteration

Initialize V(s) to arbitrary values
Repeat until V(s) converge
For all states
For all actions
Q(s,a) € X P (r(s,a) +yV(s))
V(s) € n}laxQ(s, a)

End-to-end learning/
planning

e Value lteration Network

 Each layer one step of Value lteration
e Learn YyesTa(s,s")(Ra(s,s)+yV[s'])

e |earn different Mazes

Our main observation is that each iteration of VI may be seen as passing the previous
value function Vn and reward function R through a convolution layer and max-pooling
layer. In this analogy, each channel in the convolution layer corresponds to the Q-
function for a specific action, and convolution kernel weights correspond to the
discounted transition probabilities.

End-to-end learning/
planning

o Later: RNN/LSTM for state:
VProp

e |atent & End-to-end:
TreeQN, Predictron, MuZero,
I2A, World Model

e Elaborate, Complex systems

Train agent inside of its own hallucinated
dream generated by its world model

(—‘ environment ¢

—

observation

MON-RNN (M)
n

1\ Transfer policy back

into actual environment

action
—

Diagram

LEARNING
Uncertainty

Ensembles Latent Models
CNN

Trajectory Dreamer

Model-predicti PILCO GPS SVG Local Plan2Explore
ST PETS MVE Meta L3P VPN SimPLe
control
Dreamer-v2
PLANNING
I Predictron
End-foend vProp World Model

Network-Planning MuZero

An Overview of Model-
Based Approaches

Learning Planning Environment
PILCO Uncertainty Trajectory Pendulum
iLQG Uncertainty MPC Small
GPS Uncertainty Trajectory Small
SVG Uncertainty Trajectory Small
VIN CNN e2e Mazes
VProp CNN e2e Mazes
Planning CNN/LSTM e2e Mazes
TreeQN Latent e2e Mazes
I2A Latent e2e Mazes
Predictron Latent e2e Mazes
World Model Latent e2e Car Racing
Local Model Uncertainty Trajectory MuJoCo
Visual Foresight Video Prediction MPC Manipulation
PETS Ensemble MPC MuJoCo
MVE Ensemble Trajectory MuJoCo
Meta Policy Ensemble Trajectory MuJoCo
Policy Optim Ensemble Trajectory MuJoCo
PlaNet Latent MPC MuJoCo
Dreamer Latent Trajectory MuJoCo
Plan2Explore Latent Trajectory MuJoCo
L3P Latent Trajectory MuJoCo
Video-prediction Latent Trajectory Atari
VPN Latent Trajectory Atari
SimPLe Latent Trajectory Atari
Dreamer-v2 Latent Trajectory Atari

MuZero Latent e2e/MCTS Atari/Go

PILCO uncertainty/
trajectory

e (Gaussian Processes

e Computationally
Expensive

L5F

prediction

-=== target function

training data 20 credible region

1 1 1 1 1 | 1 1 1 1
0 2 4 6 8 10

PETS ensemble/mpc

Trajectory Propagation Planning via Model Predictive Control

Dynamics Model

‘‘‘‘‘‘‘‘‘‘
{ &5 |

\\\\\\
Ground Truth \®&7----pe@

Figure 1: Our method (PE-TS): Model: Our probabilistic ensemble (PE) dynamics model is shown as
an ensemble of two bootstraps (bootstrap disagreement far from data captures epistemic uncertainty:
our subjective uncertainty due to a lack of data), each a probabilistic neural network that captures
aleatoric uncertainty (inherent variance of the observed data). Propagation: Our trajectory sampling
(TS) propagation technique uses our dynamics model to re-sample each particle (with associated
bootstrap) according to its probabilistic prediction at each point in time, up until horizon 7'. Planning:
At each time step, our MPC algorithm computes an optimal action sequence, applies the first action

in the sequence, and repeats until the task-horizon.

(a) Cartpole (b) 7-dof Pusher

=

(c) 7-dof Reacher (d) Half-cheetah

Value Prediction Network
latent/traj

4000 ' Frosltbite [6000 ' Seaquest[400 , Enquro ' 2000 l QB'ert ,
3500 350 - :
3000 300 - , 1500 -
2500 250 ; d
2000 200 ? { 1000}
1500 150}
1000 100} . 500

500 50 -

0 0 : ' :

le7 le7

Ms. Pacman Amidar

Crazy Climber

60000

50000

40000

30000
20000

10000

le7 le7

Figure 8: Learning curves on Atari games. X-axis and y-axis correspond to steps and average reward over 100
episodes respectively.

Latent PlaNet

PlaNet latent/mpc

505 Episodes

Dreamer latent/traj

& § .

L’Ul .L'.“Ii" * II

’ [] ‘ ' : " > /

World Model Learning Value and Environment
Learning Actor Networks Interaction

The three processes of the Dreamer agent. The world model is learned from past experience. From predictions of this
model, the agent then learns a value network to predict future rewards and an actor network to select actions. The actor
network is used to interact with the environment.

Dreamer latent/traj

/"
7 S

Sparse Cartpole Acrobot Swingup Hopper Hop Walker Run Quadruped Run
| Boxing Freeway Frostbite Collect Objects Watermaze

Model True Model True

|2A latent/e2e

a) Imagination core b) Single imagination rollout c) Full I12A Architecture T, Vv
‘ ™ . imagi 2. encode \
Policy Net Env. Model ~ 1. imagine future . Model-based path / \Model-free path
~ K) - ‘\
> | EM | AN . N Aggregator ‘\.\

f ’ \
core |- o i AN 7 X \
core |>ip > //

0 ™\ gl | &
A t+1 A o o
Op.O \/
tor t A Imag‘ » 0t+1 * 8 8
Tt4+1 core | i > g g e
: ? t+1 3 3
\ © ©
i | state A = o
internal s v
A R
o :Rollout \ J\J,,,/‘
fixed input & ‘Encoding

Figure 1: I2A architecture. - notation indicates imagined quantities. a): the imagination core (IC)
predicts the next time step conditioned on an action sampled from the rollout policy 7. b): the IC

imagines trajectories of features f = (0,7), encoded by the rollout encoder. c): in the full I2A,
aggregated rollout encodings and input from a model-free path determine the output policy .

Figure 3: Random examples of procedurally generated Sokoban levels. The player (green sprite)
needs to push all 4 boxes onto the red target squares to solve a level, while avoiding irreversible
mistakes. Our agents receive sprite graphics (shown above) as observations.

Sokoban performance Unroll depth analysis

1.0 1.0
3 3
>0.8 >0.8
o o
0 0
%) %)
© 0.6 © 0.6
> >
9 9
Y— Yy—
© 0.4 © 04
5 — 12A 5 unroll depth
b —— standard(large)] — 15
g 0.2 - standard % 0.2 5
- —— no reward I2A - — 3
copy-model 12A — 1
0.Q === 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
environment steps 1e9 environment steps le9
Figure 4: Sokoban learning curves. Left: training curves of I2A and baselines. Note that I2A use
additional environment observations to pretrain the environment model, see main text for discussion.
Right: 12A training curves for various values of imagination depth.

MuZero latent/e2e

AlphaGo Zero
e

e
b

MuZero

Knowledge

Human Domain Known
Go data knowledge rules

AlphaGo becomes the first program to master Go using
neural networks and tree search
(Jan 2016, Nature)

Known
Go rules

AlphaGo Zero learns to play completely on its own,
without human knowledge
(Oct 2017, Nature)

Known
Go Chess Shogi rules

AlphaZero masters three perfect information games
using a single algorithm for all games
(Dec 2018, Science)

Go Chess Shogi Atari

MuZero learns the rules of the game, allowing it to also
master environments with unknown dynamics.
(Dec 2020, Nature)

MuZero latent/e2e
AlphaZero MuZero

1
1
(poli y P (policy)
wan Bad p po cy) Yy
et ‘ I e -- -
* V (value) @ V (value)

- / ! a (action) a (action)
/// //
/// //
// U (reward) / r (reward)
/ /
2 v ¥ A &
TN - p (policy) Y 4 p (policy)
“ V (value) , N V (value)
AlphaZero has 1 network MuZero has 3 networks from "
from to . 1
. rediction f: S — p,V
prediction f: s — p.V P . P
dynamics g: s.a — s
representation h: o — s

MuZero latent/e2e

v

representation h (o,.,0)=s’

6 | t

prediction

dynamics

lllustration of how Monte Carlo Tree Search can be used to plan with the MuZero neural networks. Starting at
the current position in the game (schematic Go board at the top of the animation), MuZero uses the
representation function (h) to map from the observation to an embedding used by the neural network (sO).
Using the dynamics function (g) and the prediction function (f), MuZero can then consider possible future
sequences of actions (a), and choose the best action.

MuZero latent/e2e

a t+1 m d t+2 m d t+3

During training, the model is unrolled alongside the collected experience, at each step predicting the
previously saved information: the value function v predicts the sum of observed rewards (u), the policy
estimate (p) predicts the previous search outcome (1), the reward estimate r predicts the last observed
reward (u).

Benchmark

4000

0 300

3000
~100 : 200 rﬁ//\ S~
e - o 2000 set
g —200 % 100 / | g - /]’ / N
R 0 H\/ 0 e _,./’_—__-q_::-
Y s
40 ~100 ~1000
0 50000 100000 150000 200000 0 50000 100000 150000 200000 0 50000 100000 150000 200000
timesteps timesteps timesteps
(a) Acrobot (b) Swimmer (c) HalfCheetah
PETS-CEM PETS-RS === ME-TRPO RS wem MBMF === GPS
m - SAC s TD3 PILCO = SLBO = SVG MB-MPO

Figure 1: A subset of all 18 performance curve figures of the bench-marked algorithms. All the algorithms are
run for 200k time-steps and with 4 random seeds. The remaining figures are in appendixf.

e SAC and TD3 are model-free baselines

e Model-based is sometimes better

Conclusion

What does the overview tell us?

Accuracy of transition model: crucial

Sample complexity trade-off: success
Results sometimes better than model-free
Still brittleness, sensitive to hyperparameters

Still active field of research

Questions?

