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Different Approaches
• Model-free


• Value-based [2,3]


• Policy-based [4]


• Model-based 


• Learned [5]


• Perfect; Two-Agent [6]


• Multi-agent [7]


• Hierarchical Reinforcement Learning (Sub-goals) [8]


• Meta Learning [9]



Motivation



Overview

• Continuous 
Action Space


• Robotics, 
Games


• MuJoCo


• REINFORCE

• Environments


• Locomotion


• Visuo-motor 
Interaction

• AC


• Bootstrapping


• Baseline


• Trust Region


• Entropy 
Exploration




Indirect Discrete Actions

• Value based is 2-step (indirect policy)


• Value-based: getting to best action via value function 
(s) = argmaxa Q(s,a)


• Certain games: chess, checkers, Go 
Pieces move to discrete locations

π



Direct Continuous Actions

• When actions are continuous, argmax is difficult/unstable


• Certain games, robots, cars, etc 
Bet any amount in poker, move a joint any degrees



MuJoCo

• Software Physics 
simulator


• Prevents wear on 
real robots


• Model-free - millions 
of trials



Policy-based Algorithms
• (vanilla) REINFORCE


• Actor Critic


• TD Bootstrap


• Advantage: A3C


• Trust Region: TRPO, PPO


• Entropy: SAC


• DQN-based: DDPG



REINFORCE

• take parameterized policy 


• sample an episode  with parameters 


• if it is better, then push parameters in that direction 1


• if not, then push parameters the other way


• (aka: vanilla policy gradient)

πθ0

τ θ1



Policy-gradient Theorem



REINFORCE



Policy-gradient Theorem



Adv./Disadv.
• Continuous policies


• Stochastic policies


• Direct policy (no in-between value step)


• Full Episode policy sample:


• Low bias


• High Variance


• (Slow convergence & Bad performance)


• [Single stepping Value-based is high-bias/low-variance]



Can we Combine the advantages 
of value-based with policy-based?



Actor Critic

• Actor = policy


• Critic = value


• 2 ideas to reduce variance


• temporal difference bootstrapping 


• baseline subtraction



Bootstrapping
• TD computes values step-wise (low variance)


• We can also use n-step values


• TD bootstrapping reduces variance of Monte Carlo at the 
cost of more bias
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Bias/Variance



Baseline Subtraction
• Rewards are often skewed, such as, all positive, leading 

to high variance. 
Centering around zero would reduce variance


• When a baseline function is added to a function, the 
Expectation does not change, and the variance is 
reduced


• The Value function is such a function for the Q function


• A(s,a) = Q(s,a) - V(s)



Advantage Variants

• Targets:



Trust Regions



Trust Region

• Vanilla REINFORCE is high variance (AC helps)


• parameters  are pushed wildly


• Normally, we would mitigate variance by reducing step 
size of function input ( )


• Trust Region is an approach using function output ( ) to 
mitigate step size, using KL divergence (TRPO), or simple 
clipping (PPO)

θ

θ

π



Trust Region
• TRPO compares old and new policy (output)


• limiting KL divergence (measure of distance of distributions)


• A small divergence allows larger step size, a large divergence contracts


• PPO just clips L to a small range 



Trust Region

• Trust Region Policy Optimization TRPO


• Proximal Policy Optimization PPO


• TRPO and PPO keep new policy closer to old policy


• Reduce variance



Variance 
Entropy


Exploration



Entropy/Exploration
• Too little exploration leads to local optima.


• Entropy is randomness. High entropy policies favor exploration


• Soft Actor Critic adds entropy H to the loss function



Policy-based Algorithms
• (vanilla) REINFORCE - directly improving continuous policy, but 

high variance


• Actor Critic


• TD Bootstrap


• Advantage: A3C


• Trust Region: TRPO, PPO


• Entropy: SAC


• DQN-based: DDPG (read book)



Results



Locomotion



DeepMind Control Suite



Visuo-motor



Visuo-motor



Questions?


