Master
Reinforcement Learning 2022
Lecture 4;

Policy Based Methods

Aske Plaat

Different Approaches

Model-free

e \alue-based [2,3]

» Policy-basc
Model-based

e | earned [5]

e Perfect; Two-Agent [6]

Multi-agent [7]

Hierarchical Reinforcement Learning (Sub-goals) [8]

Meta Learning [9]

Motivation

Overview

e Continuous e AC Environments
Action Space
° Bootstrapping e |Locomotion
e Robotics,
Games e Baseline e \isuo-motor
Interaction
e MudoC .
HIOLO * Trust Region
e REINFORCE

* Entropy
Exploration

Indirect Discrete Actions

e \alue based is 2-step (indirect policy)

e Value-based: getting to best action via value function
71(s) = argmaxa Q(s,a)

e Certain games: chess, checkers, Go
Pieces move to discrete locations

Direct Continuous Actions

 When actions are continuous, argmax is difficult/unstable

e Certain games, robots, cars, etc
Bet any amount in poker, move a joint any degrees

MudoCo

I
i

e Software Physics
simulator

e Prevents wear on
real robots

e Model-free - millions
of trials

Half-Cheetah Ant

Policy-based Algorithms

e (vanilla) REINFORCE
e Actor Critic
 TD Bootstrap
e Advantage: A3C
e Trust Region: TRPO, PPO

e Entropy: SAC

DQN-based: DDPG

REINFORCE

take parameterized policy Ttg,

sample an episode 7 with parameters 0,
If it is better, then push parameters in that direction 1
if not, then push parameters the other way

(aka: vanilla policy gradient)

Policy-gradient Theorem

Policy gradient : E;[Vy(logr(s,a,0))R(T)]

Policy function Score function

Update rule : A0 = a *x Vy(logn(s,a,0))R(T)

/N

Change In parameters Learning rate

REINFORCE

function REINFORCE
Initialise 6 arbitrarily
for each episode {s1,a1,r,....,sT_1,a7-1,r7} ~ 79 dO
fort=1to T —1do
0 < 0+ aVyglog my(st, at) vy
end for
end for
return 6
end function

Policy-gradient Theorem

VoJ(mg) = Vg E [R(7T)]

T~TT9

= VQ/P(T|9)R(7') Expand expectation
= / VoP(7|0)R(T) Bring gradient under integral
= /P(T!@)Vg log P(7|0)R(T) Log-derivative trick
= E [Vylog P(7|0)R(7)] Return to expectation form

T~T9

T
Z Vologmg(as|s;)R(T)| Expression for grad-log-prob
t=0

VQJ(WQ) = K

T~TTH

Adv./Disadv.

Continuous policies
Stochastic policies

Direct policy (no in-between value step)

Full Episode pOlICY sample' Let TD target look n steps into the future

1D (1-step) 2-step 3-step n-step

e Low bias E

e High Variance
e (Slow convergence & Bad performanc

e [Single stepping Value-based is high-bia:

Monte Carlo

Can we Combine the advantages
of value-based with policy-based?

Actor Critic

e Actor = policy
e Critic = value
e 2 ideas to reduce variance
e temporal difference bootstrapping

e baseline subtraction

Bootstrapping

e TD computes values step-wise (low variance)
V(s) + V(s)+a[R' +4V(s") — V(s)]
* We can also use n-step values

 TD bootstrapping reduces variance of Monte Carlo at the
cost of more bias

Bias/Variance

Let TD target look n steps into the future

ID (1-step) 2-step 3-step n-step Monte Carlo

O O O O

® L L ®

O O ee 0 () e e e ()

® ® ® ®

Q O O O

® ® ®

O 5 O

TD - high bias, low variance é .

MC - zero bias, high variance L

Baseline Subtraction

Rewards are often skewed, such as, all positive, leading
to high variance.
Centering around zero would reduce variance

When a baseline function is added to a function, the
Expectation does not change, and the variance is
reduced

The Value function is such a function for the Q function

A(s,a) = Q(s,a) - V(s)

Advantage Variants

VoJ(0) = Erypy(ro) [Z ¥: Vg logmg(a: |St)]
t=0

e Targets:
Y, = QMC(st, a;) = Z yi ‘T Monte Carlo target
i=t
n—1 .
¥, =0,(ss,a;) = Z Y ori +v"Vo(sy) bootstrap (n-step target)
i=t
Y, = AMC(S,, a;) = Z v 1, = Vo(s;) baseline subtraction

i=t
n—1 .

¥, =A,(s¢,a;) = Z Y -ri +v"Vg(sn) — Vo(s;) baseline + bootstrap
i=t

¥: =04(s:,0a:) Q-value approximation

Trust Regions

Trust Region

Vanilla REINFORCE is high variance (AC helps)

parameters 6 are pushed wildly

Normally, we would mitigate variance by reducing step
size of function input (0)

Trust Region is an approach using function output () to
mitigate step size, using KL divergence (TRPO), or simple
clipping (PPO)

Trust Region

TRPO compares old and new policy (output)

mg(as|sy) A]
© Ay
ﬂeold(at|st)

L(6) = E, [
limiting KL divergence (measure of distance of distributions)

E; [KL(ﬂ'Oold('lst)a mo(-|s:))] <6

A small divergence allows larger step size, a large divergence contracts

PPO just clips L to a small range [1-€,1+¢€]:A;

Trust Region

Trust Region Policy Optimization TRPO
Proximal Policy Optimization PPO
TRPO and PPO keep new policy closer to old policy

Reduce variance

Variance
Entropy
Exploration

Entropy/Exploration

* Too little exploration leads to local optima.

e Entropy is randomness. High entropy policies favor exploration

e Soft Actor Critic adds entropy H to the loss function

0111 =6; + R-Vglogmg(as|s;) +nVeH|[rg(als)]

0,75
0,5

0,25

Policy-based Algorithms

(vanilla) REINFORCE - directly improving continuous policy, but
high variance

Actor Critic
 TD Bootstrap
 Advantage: A3C

* Trust Region: TRPO, PPO

Entropy: SAC

DQN-based: DDPG (read book)

Results

Locomotion

g

DeepMind Control Suite

Our policy shows discrete-time stability;

and is robust against externalfgiSturbances

Visuo-motor

i

Vo L n
‘ ~ “user specifies goal

Questions?

