Master
Reinforcement Learning 2022
Lecture 3;

Deep Value Based Methods

Aske Plaat



Different Approaches

Model-free

e \/alue-base "2,3]

e Policy-based [4]
Model-based
e | earned [5]
e Perfect; Two-Agent [6]
Multi-agent [7]
Hierarchical Reinforcement Learning (Sub-goals) [8]

Meta Learning [9]



Motivation




The problem of solving
Large Problems



Large Problems

Deep Learning can learn end-to-end features in high-
dimensional problems and large state spaces

Curse of dimensionality
Dimensionality of 100 x 100 pixels is state space of 25610000
How to learn? Never enough samples to fill state space

Approximate, Generalize. Exploit smoothness



It is 2012

In SL, End-to-end learning has just had the breakthrough
of a lifetime at the ILSVRC, using CNN & GPU

In RL, state of the art in NN is still TD-Gammon on a small
network (40 hidden units), from 1992

What can we do with Deep CNN in reinforcement
learning?



Arcade Learning
Environment

RO



Atari Learning Environment

e Deep SL is driven by ImageNet

* Deep RL is driven by ALE

motor scooter

lifeboat

fireboat
drilling platform

mushroom

motor scooter

\

dagascar cat

conjvertible

] agaric

Squirrel monkey

grille
pickup

beach wagon
fire engine

mushroom

jelly fungus

gill fungus
dead-man's-fingers

grape spider monkey
elderberry titi
ffordshire bullterrier indri

currant howler monkey




Atari 2600

e console

e ROM game cartridge
e 128 bytes RAM
* nputs: pixels

e output: joystick actions

® [how to reverse engineer 128 bytes of RAM using
Gigabytes of neural networks]



Atari Games

TR O1

BC

*=
-

8

nxYGeEN




Mnih et al. [2013/2015]

Atari results

A computer learns to play 6
Atari 1980’s console games

End-to-end
From pixels-to-joystick

Emulator for console

.nature

EPIDEMIOLOGY
SHARE DATA IN
018

|NNUVM IONSIN
emicrobiome

THE!NTEH ATIONAL WEEKLY JOURMAL OF SCIENCE

Self-taught Al software
attains human-level
\ performance invideo games

COSMOLOGY OUANTUM PRYSICS

A GIANTINTHE | TELEPORTATION
EA ERSE




Why is this such a
Breakthrough?



Deep RL

e Supervised: (image, label) -> correct?
minimizing weights on loss-function

 DRL: (pixels, action) -> reward?
converging Q-values, minimizing Q-loss

e Should be doable, right?



Deep RL Challenges

Computational load
30 video frames/second

High-dimensional input
Does not work with Tabular Q-learning

Value Function Approximation has long been known to

be Theoretically Inherently Unstable

The problem is learning from feedback. This causes

unstable learning targets

Action

Agent

Observat ion,
Reward

Environment




Deadly Triad

e Value Function Approximation is Unstable

“Deadly Triad” of

1. function approximation [Deep]
2. off-policy learning [Q learning]
3. bootstrapping [TD]

8! "‘\'&: %}«
3 N WYY
"\ \‘%‘\m%
o D
&«%‘&}i’”“/

e

o



Three Problems

e Coverage
e Correlation
e Convergence



Coverage

e Convergence proof of Value lteration, Q-learning and
SARSA depend on covering the entire state space, in the
end.

* Not even close, in high dimensional problems

* Human learning also suffers from coverage problems:
training against the same sparring partner leads to a
narrow sKill set.



Correlation

e Supervised: database examples are uncorrelated. Stable
learning

* Deep: actions determine next state that will be learned

from
SCree ~
Agent eping : g Loudspeaker
\\)
r\ Feedback loop
i : R causes howling
Action Observation, \ | (o
Reward "

Microphone

2
>

Amplifier

Environment




Convergence
(f(x) = y)?

e Supervised: Minimization Loss-target y is fixed

» Reinforcement: Convergence Loss-target Q,_; is moving

ymax Qg, , (s', @) = Qo, (s, a)

e Converging on a moving target is hard



Supervised Minimization

def train_sl(data, net, alpha=0.001): # train classifier
for epoch in range(max_epochs): # an epoch ©1s one pass
sum_sq = 0 # reset to zero for each pass
for (image, [label) in data:
output| = net.forward_pass(image) # predict
sum_sq += (output - label)*x*2 # compute error
grad = net.gradient (sum_sq) # derivative of error
net.backward_pass (grad, alpha) # adjust weights

return net



RL Convergence

def train_qlearn(environment, Qnet, alpha=0.001, gamma=0.0,
epsilon=0.05

s = s0 # initialize start state
for epoch in range(max_epochs): # an epoch is one pass
sum_sq = 0 # reset to zero for each pass

while s not TERMINAL: # perform steps of one full episode
a = epsilongreedy(Qnet(s,a)) # net: {[s,al]-values
(r, sp) = environment (a)

Qnet .forward_pass (s,
= r + gamma * max\Qnet<sp))
sum_sq += qtarget outpuq)**Z
s = sp

grad = Qnet.gradient(sum_sq)

Qnet|. backward_pass (grad, alpha)
return (Qnet # (-values




DQN [Mnih 2013]

e Coverage
e Correlation

e Convergence

High Exploration

Replay Buffer

Low «,

Infrequent weight
updates [2015]



Replay Buffer [2013]

e Store all experience in buffer
 Sample from the history buffe: value

e Choose action epsilon greedy

12

49 | -

26

17 | -

84

72




Infrequent Weight Updates [2015]
(f(x) = y)?

* Introduce a separate target network for the convergence
targets (“y”)

e Every c updates, clone the network to a target network

* Adds delay between updates of the network and the use
of the updates in other states

* Reduces oscillations or divergence of the policy

Y Hila’JX QHi_l (S,a a,) - Q9i (Sa Cl)



DQN

Deep Q-Network

Input scaling to 84x84 pixels; score is clipped to {-1,0,+1}
layer 1 and 2 convolve with RelLU for spatial generalization
layer 3 and 4 fully connected for action selection

18 output units (joystick actions)

frame skipping 1/4 to reduce computational burden

adaptive epsilon-greedy Q-learning



DQN

Achieve stable reinforcement learning despite correlations
between states

Replay Buffer [2013] (and thus off-policy learning)

Infrequent Weight Updates [2015] for better convergence

Works empirically, no proof, little theoretical insight...



Stable Learning

* De-correlation of examples
 Exploration

e Slow learning



DQN performance

e 2013 version of DQN achieves human level play for 6
games

e 2015 version of DQN achieves human level play for 49
games

e Some games, such as Montezuma’s Revenge, have very
long credit assignment distance, and performance is
lacking



What has happened
after DQN?



Rainbow

DQN - baseline

Double DQN - de-overestimate values
Prioritized experience - sort replay buffer history
A3C - parallel actor critic (Ch4)

Distributional DQNN - probability distribution
Noisy DQN - parametric noise: exploration

-> ADDITIVE



Median human-normalized score

200%

100%

DQN
- DDQN

Rainbow

- Prioritized DDQN

— Dueling DDQN /

A3C

Distributional DQN
Noisy DQN
Rainbow f

I |
44 100 200
Millions of frames



RL Environments



OpenAl Gym

CartPole-v0
Balance a pole on a cart
(for a short time).

MountainCar-v0 Pendulum-vO
Drive up a big hill. Swing up a pendulum.

Reacher-v2
InvertedPendulum-v2

Make a 2D robotreach to a



Arcade Learning
Environment

RO






Gym & Baselines

Agent

Action Observation,

Reward

Environment




Stable Baselines

@ Stable Baselines

Docs » Welcome to Stable Baselines docs! - RL Baselines Made Easy C) Edit on GitHub

Welcome to Stable Baselines docs! - RL Baselines Made
Easy

Stable Baselines is a set of improved implementations of Reinforcement Learning (RL) algorithms
based on OpenAl Baselines.

Github repository: https://github.com/hill-a/stable-baselines
You can read a detailed presentation of Stable Baselines in the Medium article: link

Main differences with OpenAl Baselines

This toolset is a fork of OpenAl Baselines, with a major structural refactoring, and code cleanups:

Unified structure for all algorithms
« PEP8 compliant (unified code style)
« Documented functions and classes
« More tests & more code coverage

User Guide

« Installation
o Prerequisites
o Stable Release
o Bleeding-edge version
o Using Docker Images
e Getting Started



o]0,

Docs » RL Baselines Zoo ) Edit on GitHub

B RL Baselines Zoo
Installation
Train an Agent

Enjoy a Trained Agent

RL Baselines Zoo

Hyperparameter Optimization

. .
celbly iz rmed Uy OdLie RL Baselines Zoo. is a collection of pre-trained Reinforcement Learning agents using Stable-

Pre-Training (Behavior Cloning) Baselines. It also provides basic scripts for training, evaluating agents, tuning hyperparameters and

Dealing with NaNs and infs recording videos.

On saving and loading
Goals of this repository:

Exporting models

1. Provide a simple interface to train and enjoy RL agents
2. Benchmark the different Reinforcement Learning algorithms
EaselC e 3. Provide tuned hyperparameters for each environment and RL algorithm
Policy Networks 4. Have fun with the trained agents!
A2C
ACER Installation

ACKTR .
1. Install dependencies

DDPG

DON apt-get install swig cmake libopenmpi-dev zliblg-dev ffmpeg
GAIL pip install stable-baselines box2d box2d-kengz pyyaml pybullet optuna pytablewriter

HER

PPO1 2. Clone the repository:
PPO2

e git clone https://github.com/araffin/rl-baselines-zoo

TD3



Conclusion

Inspired by Supervised End-to-end Learning in ImageNet
Highly visual & imaginative Atari results

Results that were said that could not be done

A flurry of further activities in RL research

Impact of Al on society




Questions?




