
Master

Reinforcement Learning 2022

Lecture 2:

Tabular Value Based Methods

Aske Plaat

Motivation

Overview
• Background: Biology, Psychology

• Agent/Environment

• MDP

• Bellman, Temporal Difference, Bandit/Exploration, On/Off-
Policy

• Value Iteration, SARSA, Q-learning

• Gym

Deep Reinforcement Learning

=

Deep Learning

+

Reinforcement Learning

Deep Reinforcement
Learning

• Modeling of Interaction, Behavior, Action

• Database-free learning

• Power of Deep Learning for High-dimensional inputs:
vision and Generalization

• In Human terms: Eye - Hand Coordination

Deep RL

Biological Roots

RL Intuition

• Learning by conditioning

• Learning by trial and error

• trial: (state,action)

• error: (reward)

• Learn by probing

Pavlov

Skinner

Mathematical Model

Mathematics

• Markov Decision Process

• Optimization Processes

Sequential Decision Problems

• Animal conditioning is a single step problem

• RL is typically used for sequential decision problems

• RL is typically modeled as a Markov decision process

Sequential Decision Problems

Reinforcement Learning
• Is learning by interaction with an environment with a

single reward

Reinforcement Learning
• is learning by interaction

• (state, action) -> reward value

SL - RL

• database

• ((example, label), correct?)

• unordered batch examples

• categories

• classification/regression

• memoization/deep learning

• probing

• ((state,action), reward)

• sequence of examples

• behavior

• action in state (“policy”)

• memoization/deep learning

Markov Decision Process

• Andrey Markov 1856-1922

• Formalism for reinforcement learning

• Markov property: “No Memory” 
Future state is solely determined by current
state + action (previous states do not matter)

• MDP is extension of Markov Chain: actions
and rewards

MDP

• S - State

• A - Action

• T - probability of Transitioning

• R- Reward (can be positive and negative)

• - Discount factorγ

Goal of RL

• What action to take in a state?

• Find the optimal policy * 
find in each state the actions that maximize the expected
cumulative future reward

π

State

• Uniquely represent the state of the environment at time t

• location on a map

• pieces on a board

• angles of joints

• pixel values in a grid

Action
• state s -> action a -> state s’

• discrete action:  
an small integer number 
move pawn e2 to e4

• continuous action:  
bet $1234,56  
move joint A to 56,7 degrees

• discrete policy (s) -> a

• stochastic policy (a|s) -> probability distribution over actions

π

π

• state s -> action a -> state s’

• Ta(s,s’) is the probability that action a in state s will
transition to state s’ in the environment

• of s->a->s’ 
the s->a part is chosen by the agent (policy) 
the a->s’ part is chosen by the environment

• T is known by the environment, not by the agent

Transition

Transition Model

• T is known by Environment only: Model-free methods 
For example: Q-learning

• Agent has local (approximation of) T: Model-based
methods 
For example: Dyna

Deterministic Transitions

• In some environments one state follows an action 
For example: Grid World, Puzzles

Trajectory

• Episodic problems have an end

• Continuous problems continue for ever

• Trajectory/Trace/Episode is the sequence of state/action/
reward from start to finish

Reward
• Ra(s,s’) is the Reward received after action a transitions

from state s to state s’

• R() is the Return: the cumulative reward of a trace

• V (s) is the state-Value: the expected cumulative reward
of a state for following the policy from s

• Q (s,a) is the state-action-Value: the expected cumulative
reward of a state for following action a from state s and
then the policy from s’

τ

π

π

γ

• Gamma is the discount factor, discounting the importance
of future rewards

• Especially important in continuous problems

• Sometimes ignored (=1) in episodic problemsγ

Solution Methods

Select Down, Learn Up
• Policy is of central importance

• Solution algorithms (finding the
optimal policy) travel down and up
the tree repeatedly

• It is used to select which action to
take in state s 
“Selecting down”

• It is also the data structure that is
updated when rewards come in 
“Learning up”

Functions*

• Value V(s)

• Action Value Q(s,a)

• Policy (s)

• It may help to think of these functions as arrays that can
be updated

π

Bellman
• Bellman equation recursively defines value 

(assuming transition function P and policy  
are given)

• Discounted future reward

• Needs Reward, Policy, and Transition P 
It is nice to have this recursive equation, but, unfortunately
we typically do not have the transition function

�� */(7;,9 �� 05;,330.,5*,� .(4,: (5+ 9,05-69*,4,5; 3,(9505.

-PN\YL ����! 9PJOHYK)LSSTHU

HUK [OL]HS\L VM H WVZP[PVU KLWLUK VU [OL SLHM]HS\LZ� >L TLU[PVULK OV^ [OL
]HS\L VM [OL YVV[JHU IL MV\UK I` YLJ\YZP]LS` [YH]LYZPUN [OL [YLL \W^HYKZ� ^VYRPUN
IHJR^HYKZ� JVTW\[PUN [OL]HS\LZ VM PUULY UVKLZ� ;OPZ YLJ\YZP]L ZVS\[PVU TL[OVK
KLZJYPILK PUMVYTHSS` PU [OL WYL]PV\Z ZLJ[PVU PZ IHZLK VU [OL)LSSTHU LX\H[PVU�
9PJOHYK)LSSTHU �-PN\YL ����� ZOV^LK [OH[KPZJYL[L VW[PTPaH[PVU WYVISLTZ JHU
IL KLZJYPILK HZ H YLJ\YZP]L IHJR^HYK PUK\J[PVU WYVISLT B��D� (SS [OH[PZ ULLKLK
PZ [OL YLSH[PVUZOPW IL[^LLU [OL]HS\L M\UJ[PVU PU VUL Z[H[L HUK [OL UL_[Z[H[L� ;OPZ
YLSH[PVUZOPW PZ JHSSLK [OL)LSSTHU LX\H[PVU�

;OL)LSSTHU LX\H[PVU MVY [OL L_WLJ[LK]HS\L MVY ILPUN PU Z[H[L s HUK MVSSV^PUN
WVSPJ` π PZ!

Vπ(s) = R(s, π(s)) + γ ∑
s′

P(s′|s, π(s))Vπ(s′)

^OLYL R PZ [OL YL^HYK M\UJ[PVU HUK γ PZ [OL KPZJV\U[YH[L� 5V[L [OH[MVY JVT�
TVU [^V WLYZVU aLYV Z\T WLYMLJ[PUMVYTH[PVU NHTLZ [OL)LSSTHU LX\H[PVU ZPT�
WSPÄLZ NYLH[S`! γ = 1� HUK R PZ JVTTVUS` JOVZLU [V IL 1 MVY ^PU� −1 MVY SVZZ�
HUK 0 MVY KYH �̂ HUK HSZV MVY PU[LYTLKPH[L UVKLZ� ;OL L_WLJ[LK]HS\L [OLYLMVYL

Bellman Backup

Value Iteration

What if we do not have
the transition function?

Model-free

• The recursion idea to find the Value is useful

• But what if the agent does not have the Transition
function, can it use the Environment to sample from?

Temporal Difference
• Temporal Difference Learning [Sutton]

• Solution method that samples from environment,
estimating the policy, when no transition probabilities are
given

• Gamma is discount rate, Alpha is learning rate

�� */(7;,9 �� 05;,330.,5*,� .(4,: (5+ 9,05-69*,4,5; 3,(9505.

HWWYVHJO PZ [OLU� ^OLU `V\ ULLK [V NV [V [OL Z\WLYTHYRL[HNHPU� [V HS^H`Z MVSSV^
[OPZ ZHTL YV\[L� @V\ L_WSVP[[OL RUV^SLKNL [OH[`V\ OH]L [V [OL M\SSLZ[� ^P[OV\[
L]LY [Y`PUN V\[H WVZZPISL UL^ YV\[L �L_WSVYPUN�� ;Y`PUN V\[H KPMMLYLU[YV\[L ^PSS
[HRL ZVTL L_[YH [PTL HUK LMMVY[� I\[TPNO[WH` VMM PU ÄUKPUN H ZOVY[LY YV\[L� ^OPJO
`V\ JHU [OLU \ZL THU` [PTLZ MVY HZ SVUN HZ `V\ SP]L PU [OL ULPNOIV\YOVVK�

*SLHYS �̀ HS^H`Z L_WSVP[PUN TPNO[IL [OL ZHML ^H �̀ I\[PZ SPRLS` [V UV[ÄUK HU
VW[PTHS ZVS\[PVU� /V^ T\JO [V L_WSVYL� HUK PU ^OH[ZP[\H[PVUZ� PZ H M\UKHTLU[HS
[VWPJ PU YLPUMVYJLTLU[SLHYUPUN [OH[OHZ ILLU Z[\KPLK PU KLW[O PU [OL VW[PTPaH[PVU
SP[LYH[\YL B���� � �D HUK PU T\S[P HYTLK IHUKP[WYVISLTZ B���� ��D �ZLL *OHW�
[LY ���

:THY[\ZL VM L_WSVP[H[PVU HUK L_WSVYH[PVU PZ H[[OL IHZPZ VM [OL IYLHR[OYV\NOZ PU
.V� 0U *OHW[LY � ^L ^PSS KPZJ\ZZ PU KLW[O [OL 4VU[L *HYSV ;YLL :LHYJO HSNVYP[OT�
4*;:� ^OVZL ZLSLJ[PVU Y\SL <*; THRLZ L_[LUZP]L \ZL VM IHUKP[[OLVY` HUK [OL
L_WSVYH[PVU�L_WSVP[H[PVU [YHKL VMM�

;LTWVYHS +PMMLYLUJL

>L UV^ OH]L KPZJ\ZZLK OV^ [V JHSJ\SH[L [OL]HS\L VM H Z[H[L HUK OV^ [V KV
ZV LMÄJPLU[S �̀ >L HYL I\PSKPUN \W V\Y [VVSZ [V JVUZ[Y\J[ZVS\[PVU TL[OVKZ ^P[O
^OPJO ^L JHU JHSJS\H[L [OL VW[PTHS WVSPJ` HUK]HS\L VM H NHTL Z[H[L� HSSV^PUN \Z
[V JVUZ[Y\J[H NHTL WSH`PUN WYVNYHT [OH[JHU JVTW\[L [OL ILZ[TV]LZ ZV [OH[P[
JHU WSH` H M\SS NHTL�

7LYOHWZ [OL ILZ[RUV^U ZVS\[PVU TL[OVK PZ [LTWVYHS KPMMLYLUJL SLHYUPUN B���D�
;OPZ TL[OVK PZ H[[OL IHZPZ VM ;+�.HTTVU B���D�

;+ PZ H IVV[Z[YHWWPUN TL[OVKZ� P[ZHTWSLZ MYVT [OL LU]PYVUTLU[� JHSJ\SH[PUN
HU \WKH[LK LZ[PTH[L VM V(s)� MVSSV^PUN [OL)LSSTHU LX\H[PVU�� ;+ ^VYRZ I`
\WKH[PUN [OL J\YYLU[LZ[PTH[L VM [OL Z[H[L V(s) ^P[O HU LYYVY]HS\L IHZLK VU [OL
LZ[PTH[L VM [OL UL_[Z[H[L� 0[PZ H IVV[Z[YHWWPUN TL[OVK! [OL \WKH[L [HRLZ PU[V
HJJV\U[WYL]PV\Z LZ[PTH[LZ� ,Z[PTH[LZ HYL IHJRLK \W [OYV\NO [OL Z[H[L ZWHJL�

V(s)← V(s) + α[R′ + γV(s′)−V(s)]

5V[L [OL PU[YVK\J[PVU VM α� [OL SLHYUPUN YH[L� ;OL γ WHYHTL[LY PZ [OL KPZJV\U[
YH[L� ;+ WLYMVYTZ]HS\L WYLKPJ[PVU�

5V �̂ PU VYKLY [V HYYP]L H[H M\SS YLPUMVYJLTLU[SLHYUPUN HSNVYP[OT ^L HSZV ULLK
H JVU[YVS WVSPJ �̀ ;+ NP]LZ \Z H SLHYUPUN Y\SL MVY]HS\L \WKH[LZ� [OL LYYVY�WHY[VM
[YPHS HUK LYYVY� -VY H M\SS YLPUMVYJLTLU[SLHYUPUN HSNVYP[OT ^L HSZV ULLK H JVU[YVS
WVSPJ �̀ ^OPJO [LSSZ \ZL ^OPJO UVKLZ [V JOVVZL MVY L_WHUZPVU� [OL [YPHS WHY[VM [YPHS
HUK LYYVY� ;̂ V Z\JO JVU[YVS WVSPJ` HYL :(9:(� `PLSKPUN VU�WVSPJ` ;+ JVU[YVS� HUK
8�SLHYUPUN� `PLSKPUN VMM�WVSPJ` ;+ JVU[YVS� :(9:(HUK 8�SLHYUPUN HYL KPZJ\ZZLK
PU :LJ[PVU ����

�;OL)LSSTHU LX\H[PVU KLZJYPILZ OV^ V(s) JHU IL JHSJ\SH[LK ^OLU WVSPJ` π PZ MVSSV^LK� IHZLK
VU [OL YL^HYK M\UJ[PVU HUK [OL [YHUZP[PVU M\UJ[PVU P� ;+ PZ KPMMLYLU[� P[ZHTWSLZ VM [OL LU]PYVUTLU[
[V HKQ\Z[[OL J\YYLU[V(s) LZ[PTH[L \ZPUN H SLHYUPUN YH[L� ;+ KVLZ UV[ULLK [V RUV^ [OL [YHUZP[PVU
M\UJ[PVU P�

Temporal Difference

Compare

• Monte Carlo (full-episode)

• Temporal Difference (partial-episode)

• Dynamic Programming (given transition function)

Monte Carlo

Temporal Difference

Dynamic Programming

Bias/Variance

Exploration/Exploitation

Exploration/Exploitation

• We now have a recursive formula to compute the value
[Learn Up]

• We also have a sampling procedure [Select Down]

• How can we sample in a smart way?

• Exploit the best current action

• Explore to get out of local optima

The Societal Importance of
Exploration

• Sensational news satisfies our
immediate desires; thoughtful
new directions explores less-
direct benefits

• Without sufficient exploration
your news will stay inside your
filter bubble

• Without sufficient exploration
your democratic processes will
get you Trump

Multi-armed Bandit

• Theory for optimal exploration sampling

• Important in Clinical Trials to find minimal
regret

Epsilon-Greedy

• Greedy: Exploit best current action

• However, for an epsilon fraction, you explore a random
action

• Static, adaptive schemes

Epsilon-Greedy

• When epsilon-greedy explores [Select Down], and finds
that the action was indeed non-optimal, Then What [Learn
Up]?

• On-policy learning says: use its reward anyway. 
[highly consistent, but perhaps slow convergence]

• Off-policy learning says: use the best action instead to
learn from. 
[may diverge, but may be quicker to converge]

On Policy, Off Policy
• On policy learning samples its behavior from the current

(best) policy function as it is updating that current policy
function. Even when selection explores non-optimally, it
follows that to update policy. As it learns the latest policy, it
walks (samples behavior) from this policy -> convergence

• Off-policy learning samples its behavior from a policy but
updates from the one with the best rewards. When behavior
explores non-optimally, learning exploits; it learns the best
policy off the behavior policy -> may not converge, since
behavior policy may be not influenced by learning. (But it
might be a large database of previous samples, and off-
policy is suited for parallelization)

• Use Q to select [down] s’ and a’, and then:

• On-behavior-policy learning [up]: SARSA

• Off-behavior-policy learning [up]: Q-learning

On Policy, Off Policy

SARSA
• Initialize Q-function

• For All Episodes:

• Initialize s; Select a -greedy from Q(s)

• For All Time Steps in this Episode:

• Perform a in Environment giving s’ and r

• Select a’ -greedy from Q(s) :: SELECT DOWN

• Q(s,a) Q(s,a)+ [r+ Q(s’,a’)-Q(s,a)] :: LEARN UPDATE

• s s’; a a’

• return Q

ϵ

ϵ

← α γ

← ←

Q-learning
• Initialize Q-function

• For All Episodes:

• Initialize s

• For All Time Steps in this Episode:

• Select a -greedy from Q(s) :: SELECT DOWN

• Perform a in Environment giving s’ and r

• Q(s,a) Q(s,a)+ [r+ maxaQ(s’,a)-Q(s,a)] :: LEARN UPDATE

• s s’

• return Q

ϵ

← α γ

←

Practice

Taxi example

Gym

Gym

Questions?

