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Motivation



Overview
• Background: Biology, Psychology


• Agent/Environment


• MDP


• Bellman, Temporal Difference, Bandit/Exploration, On/Off-
Policy


• Value Iteration, SARSA, Q-learning


• Gym



Deep Reinforcement Learning 

= 


Deep Learning 

+ 


Reinforcement Learning



Deep Reinforcement 
Learning

• Modeling of Interaction, Behavior, Action


• Database-free learning


• Power of Deep Learning for High-dimensional inputs: 
vision and Generalization


• In Human terms: Eye - Hand Coordination

Deep RL



Biological Roots



RL Intuition

• Learning by conditioning 


• Learning by trial and error


• trial: (state,action)


• error: (reward)


• Learn by probing



Pavlov



Skinner





Mathematical Model



Mathematics

• Markov Decision Process


• Optimization Processes



Sequential Decision Problems

• Animal conditioning is a single step problem


• RL is typically used for sequential decision problems


• RL is typically modeled as a Markov decision process



Sequential Decision Problems



Reinforcement Learning
• Is learning by interaction with an environment with a 

single reward



Reinforcement Learning
• is learning by interaction


• (state, action) -> reward value



SL - RL

• database 


• ((example, label), correct?)


• unordered batch examples


• categories


• classification/regression


• memoization/deep learning

• probing 


• ((state,action), reward)


• sequence of examples


• behavior


• action in state (“policy”)


• memoization/deep learning



Markov Decision Process

• Andrey Markov 1856-1922


• Formalism for reinforcement learning


• Markov property: “No Memory” 
Future state is solely determined by current 
state + action (previous states do not matter)


• MDP is extension of Markov Chain: actions 
and rewards



MDP

• S - State


• A - Action


• T - probability of Transitioning


• R- Reward (can be positive and negative)


•  - Discount factorγ



Goal of RL

• What action to take in a state?


• Find the optimal policy * 
find in each state the actions that maximize the expected 
cumulative future reward

π



State

• Uniquely represent the state of the environment at time t


• location on a map


• pieces on a board


• angles of joints


• pixel values in a grid



Action
• state s -> action a -> state s’


• discrete action:  
an small integer number 
move pawn e2 to e4


• continuous action:  
bet $1234,56   
move joint A to 56,7 degrees


• discrete policy (s) -> a


• stochastic policy (a|s) -> probability distribution over actions

π

π



• state s -> action a -> state s’


• Ta(s,s’) is the probability that action a in state s will 
transition to state s’ in the environment


• of s->a->s’ 
the s->a part is chosen by the agent (policy) 
the a->s’ part is chosen by the environment


• T is known by the environment, not by the agent

Transition



Transition Model

• T is known by Environment only: Model-free methods 
For example: Q-learning


• Agent has local (approximation of) T: Model-based 
methods 
For example: Dyna



Deterministic Transitions

• In some environments one state follows an action 
For example: Grid World, Puzzles



Trajectory

• Episodic problems have an end


• Continuous problems continue for ever


• Trajectory/Trace/Episode is the sequence of state/action/
reward from start to finish 



Reward
• Ra(s,s’) is the Reward received after action a transitions 

from state s to state s’


• R( ) is the Return: the cumulative reward of a trace


• V (s) is the state-Value: the expected cumulative reward 
of a state for following the policy from s


• Q (s,a) is the state-action-Value: the expected cumulative 
reward of a state for following action a from state s and 
then the policy from s’

τ

π

π



γ

• Gamma is the discount factor, discounting the importance 
of future rewards 


• Especially important in continuous problems


• Sometimes ignored ( =1) in episodic problemsγ



Solution Methods



Select Down, Learn Up
• Policy is of central importance


• Solution algorithms (finding the 
optimal policy) travel down and up 
the tree repeatedly


• It is used to select which action to 
take in state s 
“Selecting down”


• It is also the data structure that is 
updated when rewards come in 
“Learning up”



Functions*

• Value V(s)


• Action Value Q(s,a) 


• Policy (s)


• It may help to think of these functions as arrays that can 
be updated

π



Bellman
• Bellman equation recursively defines value 

(assuming transition function P and policy  
are given)


• Discounted future reward


• Needs Reward, Policy, and Transition P 
It is nice to have this recursive equation, but, unfortunately 
we typically do not have the transition function
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Bellman Backup



Value Iteration



What if we do not have  
the transition function?



Model-free

• The recursion idea to find the Value is useful


• But what if the agent does not have the Transition 
function, can it use the Environment to sample from?



Temporal Difference
• Temporal Difference Learning [Sutton]


• Solution method that samples from environment, 
estimating the policy, when no transition probabilities are 
given


• Gamma is discount rate, Alpha is learning rate
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Temporal Difference



Compare

• Monte Carlo (full-episode)


• Temporal Difference (partial-episode)


• Dynamic Programming (given transition function)



Monte Carlo



Temporal Difference



Dynamic Programming



Bias/Variance



Exploration/Exploitation



Exploration/Exploitation

• We now have a recursive formula to compute the value 
[Learn Up]


• We also have a sampling procedure [Select Down]


• How can we sample in a smart way?


• Exploit the best current action


• Explore to get out of local optima



The Societal Importance of 
Exploration

• Sensational news satisfies our 
immediate desires; thoughtful 
new directions explores less-
direct benefits


• Without sufficient exploration 
your news will stay inside your 
filter bubble


• Without sufficient exploration 
your democratic processes will 
get you Trump



Multi-armed Bandit

• Theory for optimal exploration sampling


• Important in Clinical Trials to find minimal 
regret



Epsilon-Greedy

• Greedy: Exploit best current action


• However, for an epsilon fraction, you explore a random 
action


• Static, adaptive schemes



Epsilon-Greedy

• When epsilon-greedy explores [Select Down], and finds 
that the action was indeed non-optimal, Then What [Learn 
Up]?


• On-policy learning says: use its reward anyway. 
[highly consistent, but perhaps slow convergence]


• Off-policy learning says: use the best action instead to 
learn from. 
[may diverge, but may be quicker to converge]



On Policy, Off Policy
• On policy learning samples its behavior from the current 

(best) policy function as it is updating that current policy 
function. Even when selection explores non-optimally, it 
follows that to update policy. As it learns the latest policy, it 
walks (samples behavior) from this policy -> convergence


• Off-policy learning samples its behavior from a policy but 
updates from the one with the best rewards. When behavior 
explores non-optimally, learning exploits; it learns the best 
policy off the behavior policy -> may not converge, since 
behavior policy may be not influenced by learning. (But it 
might be a large database of previous samples, and off-
policy is suited for parallelization)



• Use Q to select [down] s’ and a’, and then:


• On-behavior-policy learning [up]: SARSA


• Off-behavior-policy learning [up]: Q-learning

On Policy, Off Policy



SARSA
• Initialize Q-function


• For All Episodes:


• Initialize s; Select a -greedy from Q(s)


• For All Time Steps in this Episode:


• Perform a in Environment giving s’ and r


• Select a’ -greedy from Q(s)                    :: SELECT DOWN 

• Q(s,a)  Q(s,a)+ [r+ Q(s’,a’)-Q(s,a)]       :: LEARN UPDATE  

• s  s’; a  a’


• return Q

ϵ

ϵ

← α γ

← ←



Q-learning
• Initialize Q-function


• For All Episodes:


• Initialize s


• For All Time Steps in this Episode:


• Select a -greedy from Q(s)                            :: SELECT DOWN 

• Perform a in Environment giving s’ and r


• Q(s,a)  Q(s,a)+ [r+ maxaQ(s’,a)-Q(s,a)]       :: LEARN UPDATE  

• s  s’


• return Q

ϵ

← α γ

←



Practice



Taxi example



Gym



Gym



Questions?


