Master
Reinforcement Learning 2022
Lecture 2;

Tabular Value Based Methods

Aske Plaat

UNIVERSITAT PADERBORN

Swing-up and balancing of the double
pendulum on a cart by reinforcement learning

Overview

Background: Biology, Psychology
Agent/Environment

MDP

Bellman, Temporal Difference, Bandit/Exploration, On/Off-
Policy

Value lteration, SARSA, Q-learning

Gym

Deep Reinforcement Learning

Deep Learning
+
Reinforcement Learning

Deep Reinforcement
Learning

Modeling of Interaction, Behavior, Action
Database-free learning

Power of Deep Learning for High-dimensional inputs:
vision and Generalization

In Human terms: Eye - Hand Coordination

Deep RL

Biological Roots

RL Intuition

Learning by conditioning

Learning by trial and error

e trial: (state,action)
e error: (reward)

Learn by probing

Unconditioned Response Unconditioned Stimulus
(Salivation) (Food)

!

~—r
N

No Response Neutral Stimulus

(Bell Ringing)

! ')—1

——
Unconditioned Response Neutra | Stimulus Uncon ditioned Stimulus
(Salivation) (Bell Ringing) (Food)

!

Conditioned Response Conditioned Stimulus
(Salivation) (Bell Ringing)

Paviov

B.F. Skinner

"The Father of Operant
Conditioning"

Pellet
dispenser

Dispenser
tube

generator

Electric grid

Neuron Anatomy

dendrite axpn

90

myelin

nucleus axon terminal

ol o

Scwann cell

node of Ranvier

sOma

Mathematical Model

Mathematics

e Markov Decision Process

e QOptimization Processes

Sequential Decision Problems

* Animal conditioning is a single step problem
 RL is typically used for sequential decision problems

 RL is typically modeled as a Markov decision process

Sequentlal Decision Problems

T -t-.-mna-g’
-) >

Reinforcement Learning

* |s learning by interaction with an environment with a
single reward

Agent

Action Observation,
Reward

Environment

Reinforcement Learning

* |s learning by interaction

(state, action) -> reward value

Agent
state reward action

s, | |R, A

E Rt+1
;5}+1 | Environment]4_

The agent-environment interaction in reinforcement learning. (Source: Sutton and Barto, 2017)

database

((example, label), correct?)
unordered batch examples
categories
classification/regression

memoization/deep learning

probing

((state,action), reward)
sequence of examples
behavior

action in state (“policy”)

memoization/deep learning

Andrey Markov 1856-1922
Formalism for reinforcement learning

Markov property: “No Memory”
Future state is solely determined by current
state + action (previous states do not matter)

MDP is extension of Markov Chain: actions
and rewards

Markov Decision Process

S - State

A - Action

T - probability of Transitioning

R- Reward (can be positive and negative)

y - Discount factor

Goal of RL

e What action to take in a state?

e Find the optimal policy 7*
find in each state the actions that maximize the expected
cumulative future reward

State

* Uniquely represent the state of the environment at time t
* location on a map i.,...;.:,',,:,,‘,,,é

* pieces on a board

e angles of joints

11111

e pixel values in a grid

3-DOF A
Wrist Elbow Shoulder

Tension Amplification 7 Actuators
Mechanisms for Actuation

Action

state s -> action a -> state s’

discrete action:
an small integer number
move pawn e2 to e4

continuous action:
bet $1234,56
move joint A to 56,7 degrees

discrete policy 7(s) -> a

stochastic policy 7(als) -> probability distribution over actions

Transition .

a
p\"
OO OO OO

state s -> action a -> state s’ Backup diagram for v,

Ta(s,s’) is the probability that action a in state s will
transition to state s’ in the environment

of s->a->s’
the s->a part is chosen by the agent (policy)
the a->s’ part is chosen by the environment

T I1s known by the environment, not by the agent

Transition Model

 Tis known by Environment only: Model-free methods
For example: Q-learning

e Agent has local (approximation of) T: Model-based
methods

For example: Dyna

Deterministic Transitions

e |n some environments one state follows an action
For example: Grid World, Puzzles

S

T las>Ta
a,s’

Trajectory

e Episodic problems have an end
e Continuous problems continue for ever

* Trajectory/Trace/Episode is the sequence of state/action/
reward from start to finish

n _
T = {Sta Ats Tty St+1s -o5 At4ns N't4n,s St+n+1}

Reward

Ra(s,s’) is the Reward received after action a transitions
from state s to state s’

R(7) is the Return: the cumulative reward of a trace

V*(s) is the state-Value: the expected cumulative reward
of a state for following the policy from s

Q”(s,a) is the state-action-Value: the expected cumulative
reward of a state for following action a from state s and
then the policy from s’

e Gamma is the discount factor, discounting the importance
of future rewards

e Especially important in continuous problems

e Sometimes ignored (y=1) in episodic problems

Solution Methods

Select Down, Learn Up

e Policy is of central importance

e Solution algorithms (finding the
optimal policy) travel down and up T
the tree repeatedly a

e |t is used to select which action to D T
take In state s

“Selecting down” OO OO O OS/

ackup diagr: T VU
e |t is also the data structure that is Backup diagram for v

updated when rewards come in
“Learning up”

Functions”

Value V(s)

Action Value Q(s,a)
Policy 7(s)

It may help to think of these functions as arrays that can
be updated

Bellman

* Bellman equation recursively defines value
(assuming transition function P and policy
are given)

e Discounted future reward

V7*(s) = R(s, 7t(s))

* Needs Reward, Policy, and Transition P
It is nice to have this recursive equation, but, unfortunately
we typically do not have the transition function

Bellman Backup

Value lteration

Initialize V(s) to arbitrary values
Repeat until V(s) converge
For all states
For all actions
Q(s,a) € X P (r(s,a) +yV(s))
V(s) € n}laxQ(s, a)

What if we do not have
the transition function?

Model-free

e The recursion idea to find the Value is useful

 But what if the agent does not have the Transition
function, can it use the Environment to sample from?

Temporal Difference

e Temporal Difference Learning [Sutton]

e Solution method that samples from environment,

estimating the policy, when no transition probabilities are
given

V(s) + V(s) +a[R' + 4V (s") — V(s)]

e Gamma is discount rate, Alpha is learning rate

Temporal Difference

m [D methods learn directly from episodes of experience
m TD is model-free: no knowledge of MDP transitions / rewards
m D learns from incomplete episodes, by bootstrapping

m [D updates a guess towards a guess

Compare

e Monte Carlo (full-episode)
e Temporal Difference (partial-episode)

 Dynamic Programming (given transition function)

Monte Carlo

Monte-Carlo Backup:

V(S:) < V(S:) + a (G — V(St))

S,

QQ@@&

/ /\I\

\ / \ / \

In Monte-Carlo we are basically traversing one random path of states which eventually leads to
a terminating state. Hence, it will traverse through the depth and end with a terminating state.

Temporal Difference

TD Backup:

V(5:) < V(S:) + a(Rep1 +7V(Ser1) — V(S:))

9o
OO0
] Q
, 4 \‘ I\ // \\ :

In TD, we only look one step ahead and then estimate the rest. That is Ri;1 + gamma*(V(St41).

)
i e

1
s
[
O [O ¢
LQIDI\Q O ofe
A | /A \
\ I/\

\
/ / \/

/

Dynamic Programming

Dynamic programming backup:

V(St) < Ex [Rer1 + v V(Se+1)]

Q O [Q LQ O ole
,\l ,\l /\ |/\ 1
! 1 |

/ \
o /A / \ PN | N

In DP, we used to consider all possible states one level ahead, i.e the entire breadth of level+1.

As opposed to this, in MC and TD we are only considering a limited space.

Bias/Variance

Let TD target look n steps into the future

ID (1-step) 2-step 3-step n-step Monte Carlo

O O O O

® L L ®

O O ee 0 () e e e ()

® ® ® ®

Q O O O

® ® ®

O 5 O

TD - high bias, low variance é .

MC - zero bias, high variance L

Exploration/Exploitation

Exploration/Exploitation

 We now have a recursive formula to compute the value
[Learn Up]

e \We also have a sampling procedure [Select Down]
e How can we sample in a smart way?
e Exploit the best current action 4

e Explore to get out of local optima f/

The Societal Importance of
Exploration

e Sensational news satisfies our
immediate desires; thoughtful
new directions explores less-
direct benefits

e Without sufficient exploration
your news will stay inside your
filter bubble

o Without sufficient exploration
your democratic processes will
get you Trump

Multi-armed Bandit

A OO Ry .
100 A 4 = -

o T -

=@ 0o smm OO -
i <

- s
- T
< '
o B o &
4 ©
- " anas et . -

* Theory for optimal exploration sampling

. -

e Important in Clinical Trials to find minimal "
regret

MULTI-ARMED
BANDIT

A
B
C

> »
Learning Earning =il

Epsilon-Greedy

Randomly
choose arm

Random number

(n

Choose
Best arm

e Greedy: Exploit best current action

e However, for an epsilon fraction, you explore a random
action

e Static, adaptive schemes

Epsilon-Greedy

 \When epsilon-greedy explores [Select Down], and finds

that the action was indeed non-optimal, Then What [Learn
Up]?

 On-policy learning says: use its reward anyway.
[highly consistent, but perhaps slow convergence]

e Off-policy learning says: use the best action instead to
learn from.

[may diverge, but may be quicker to converge]

On Policy, Off Policy

* On policy learning samples its behavior from the current
(best) policy function as it is updating that current policy
function. Even when selection explores non-optimally, it
follows that to update policy. As it learns the latest policy, it
walks (samples behavior) from this policy -> convergence

e Off-policy learning samples its behavior from a policy but
updates from the one with the best rewards. When behavior
explores non-optimally, learning exploits; it learns the best
policy off the behavior policy -> may not converge, since
behavior policy may be not influenced by learning. (But it
might be a large database of previous samples, and off-
policy is suited for parallelization)

On Policy, Off Policy

e Use Q to select [down] s’ and a’, and then:
* On-behavior-policy learning [up]: SARSA

O(st,a;) «— O(se,ar) +alrier +yQ (841, A1) — Q (8¢, ar)]

e Off-behavior-policy learning [up]: Q-learning

Q(ss,ar) < Q(8s,ar) + afrpr + yms,x Q(st+1,a) — O(Ss,a:)]

SARSA

e |nitialize Q-function
e For All Episodes:
e Initialize s; Select a e-greedy from Q(s)

e For All Time Steps in this Episode:

e Perform a in Environment giving s’ and r

e Select a’ e-greedy from Q(s) :: SELECT DOWN
e Q(s,a) < Q(s,a)+a[r+yQ(s’,a’)-Q(s,a)] :: LEARN UPDATE
e S«—sia«a

e return Q

Q-learning

* |nitialize Q-function
* For All Episodes:
* |nitialize s
* For All Time Steps in this Episode:
e Select a e-greedy from Q(s) .- SELECT DOWN
* Perform a in Environment giving s’ and r
e Q(s,a) « Q(s,a)+a[r+ymaxaQ(s’,a)-Q(s,a)] :: LEARN UPDATE
e S« ¢

* return Q

Practice

Taxi example

Action Space and
the Rewards

* Default reward: -1

* Drop-off at right destination:
20

* Pickup at wrong location:
-10

* Drop-off at wrong location:
-10

Gym is a toolkit for developing and
comparing reinforcement learning
algorithms. It supports teaching

agents everything from walking to

playing games like Pong or Pinball.

View documentation »
View on GitHub »

‘ Episode 1

RandomAgent on LunarLander-v2

RandomAgent on Ant-v2

T

Gym

Open source interface to reinforcement learning tasks.
The gym library provides an easy-to-use suite of reinforcement
learning tasks.

import gym

env = gym.make("CartPole-v1")

observation = env.reset()

for _ in range(1000):
env.render()
action = env.action_space.sample() # your agent here (this takes random actions)
observation, reward, done, info = env.step(action)

if done:
observation = env.reset()
env.close()

You can write your agent using your existing numerical

a We provide the environment; you provide the algorithm.
computation library, such as TensorFlow or Theano.

Questions?

