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Different Approaches

Model-free
e \alue-based [2,3]
e Policy-based [4]
Model-based
e | earned [5]
e Perfect; Two-Agent [6]
Multi-agent [7]
Hierarchical Reinforcement Learning (Sub-goals) [8]

Meta Learning [9]



Eval

e \What should we keep?
e Lectures
e Assignments

e What can be improved?
e Lectures
* Assignments

e QOther remarks



Future



Agent that maximizes reward in
a particular environment

Intelligence definition
according to Legg, Hutter:
Agent’s ability to achieve goals
in a wide range of environments

Continually learn about the
world and achieve human-
defined goals

Personal assistant

-(Value based

-(Policy based

-(Imitation learning

-(Model-based

D

Methods

Reinforcement
Learning

Data efficiency)m

»

Credit assignment)
Challenges

& Sparse rewards

Training stability

Lifelong Iearning)w

Scalability

http://louiskirsch.com




Extensions

Model-based

* Robots

Multi-Agent

e Real time strategy games
Hierarchical

e Teams

Meta

e Lifelong learning



Generative

real/fake

\ real/fake /

G(z)



Input HiFaceGAN DFDNet Wan et al. PULSE GFP-GAN
From real life ACMMM 20 ECCV 20 CVPR 20 CVPR 20 Ours
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Multi Modal

TEXT PROMPT  an armchair in the shape of an avocado. an armchair imitating an avocado.

AI-GENERATED
IMAGES

In the preceding visual, we explored DALL-E's
ability to generate fantastical objects by
combining two unrelated ideas. Here, we explore
its ability to take inspiration from an unrelated
idea while respecting the form of the thing being
designed, ideally producing an object that
appears to be practically functional. We found
that prompting DALL-E with the phrases “in the

shape of,” “in the form of,” and “in the style of”
gives it the ability to do this.

When generating some of these objects, such as

"an armchair in the shape of an avocado”,
DALL-E appears to relate the shape of a half
avocado to the back of the chair, and the pit of
the avocado to the cushion. We find that DALL-E
is susceptible to the same kinds of mistakes
mentioned in the previous visual.
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Stanford University

Stanford University
— Human-Centered
— Artificial Intelligence

About Vv People ¥  Research Vv Education Vv Policy Vv News Vv Events Vv

Introducing the Center for Research on
Foundation Models (CRFM)

This new center at Stanford convenes scholars from across the university to study the technical principles and

societal impact of foundation models.

Aug18,2021 W § @ in
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Today

Explainable

|H.Q B * Why did you do that?
CSHETEs * Why not something else?
L1 -R Learning This is a cat * When do you succeed?
EEuamme (p=.93) + When do you fail?
EMB~ES Process Y
HE="=0r * When can | trust you?
ERZREs « How do | correct an error?
Training Learmmed Output User with
Data Function a Task
1o bl y * I understand why
- - A This is a cat:
DEEDEs B - : * | understand why not
New L3 £3.4 | <1t has fur, whiskers, « | know when you'll succeed
Learning -~ A X 2R3N and claws. sl b I fail
o Sl i | <1t has this feature: I know :he" you'lice
rocess Ah ah dd ¢t ~ Y * | know when to trust you
(ArEk bl m- * | know why you erred
Training Explainable  Explanation User with
Data Model Interface a Task
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EXplainabiity

New approach Learning techniques (today)
(notional)
Neural nets P
Create a suite of ~~ Graphical \\\ Mo
machine learning mode N N Y
. Deep Ensemble £ | 0
techniques that learning . methods | =] 50
produce more Bayesian ‘ e
explainable belief nets B 5
Eﬁé?;?«lag?nainglg AOG CRFs HBNs/ forests g
- S P _—
Statistical MLN
performance odels / Becision —_
= Markov trees
SVMs — . mcdels Explainability
! o :
22 ‘ui .((:m:’ ; ‘ulf-‘ n\:‘/l‘ Model
& i ;.;, Experiment
= ALFE F * i ?k

Interpretable models

Techniques to learn more
structured, interpretable,

Deep explanation

Modified deep learning
techniques to learn

Model induction
Techniques to infer an

explainable model from any

model as a black box

explainable features casual models
Explanation framework
Task
Recommendation,
decision, or action
Explainable Explanation Decision
model interface
The user makes a
decision based on
the explanation
XAl System Explanation
The system takes input The system provides an
from the current task and explanation to the user
makes a recommendation, that justifies its recommendation,
decision, or action decision, or action
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